49
|
1 library(data.table)
|
|
2 library(ggplot2)
|
|
3
|
0
|
4 args <- commandArgs(trailingOnly = TRUE)
|
|
5
|
|
6 input = args[1]
|
4
|
7 genes = unlist(strsplit(args[2], ","))
|
0
|
8 outputdir = args[3]
|
22
|
9 print(args[4])
|
|
10 include_fr1 = ifelse(args[4] == "yes", T, F)
|
0
|
11 setwd(outputdir)
|
|
12
|
|
13 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
|
|
14
|
|
15 if(length(dat$Sequence.ID) == 0){
|
4
|
16 setwd(outputdir)
|
|
17 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
|
|
18 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)")
|
|
19 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
|
|
20 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
|
|
21 row.names(transitionTable) = c("A", "C", "G", "T")
|
|
22 transitionTable["A","A"] = NA
|
|
23 transitionTable["C","C"] = NA
|
|
24 transitionTable["G","G"] = NA
|
|
25 transitionTable["T","T"] = NA
|
|
26 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
|
|
27 cat("0", file="n.txt")
|
|
28 stop("No data")
|
0
|
29 }
|
|
30
|
|
31
|
|
32
|
|
33 cleanup_columns = c("FR1.IMGT.c.a",
|
|
34 "FR2.IMGT.g.t",
|
|
35 "CDR1.IMGT.Nb.of.nucleotides",
|
|
36 "CDR2.IMGT.t.a",
|
|
37 "FR1.IMGT.c.g",
|
|
38 "CDR1.IMGT.c.t",
|
|
39 "FR2.IMGT.a.c",
|
|
40 "FR2.IMGT.Nb.of.mutations",
|
|
41 "FR2.IMGT.g.c",
|
|
42 "FR2.IMGT.a.g",
|
|
43 "FR3.IMGT.t.a",
|
|
44 "FR3.IMGT.t.c",
|
|
45 "FR2.IMGT.g.a",
|
|
46 "FR3.IMGT.c.g",
|
|
47 "FR1.IMGT.Nb.of.mutations",
|
|
48 "CDR1.IMGT.g.a",
|
|
49 "CDR1.IMGT.t.g",
|
|
50 "CDR1.IMGT.g.c",
|
|
51 "CDR2.IMGT.Nb.of.nucleotides",
|
|
52 "FR2.IMGT.a.t",
|
|
53 "CDR1.IMGT.Nb.of.mutations",
|
|
54 "CDR1.IMGT.a.g",
|
|
55 "FR3.IMGT.a.c",
|
|
56 "FR1.IMGT.g.a",
|
|
57 "FR3.IMGT.a.g",
|
|
58 "FR1.IMGT.a.t",
|
|
59 "CDR2.IMGT.a.g",
|
|
60 "CDR2.IMGT.Nb.of.mutations",
|
|
61 "CDR2.IMGT.g.t",
|
|
62 "CDR2.IMGT.a.c",
|
|
63 "CDR1.IMGT.t.c",
|
|
64 "FR3.IMGT.g.c",
|
|
65 "FR1.IMGT.g.t",
|
|
66 "FR3.IMGT.g.t",
|
|
67 "CDR1.IMGT.a.t",
|
|
68 "FR1.IMGT.a.g",
|
|
69 "FR3.IMGT.a.t",
|
|
70 "FR3.IMGT.Nb.of.nucleotides",
|
|
71 "FR2.IMGT.t.c",
|
|
72 "CDR2.IMGT.g.a",
|
|
73 "FR2.IMGT.t.a",
|
|
74 "CDR1.IMGT.t.a",
|
|
75 "FR2.IMGT.t.g",
|
|
76 "FR3.IMGT.t.g",
|
|
77 "FR2.IMGT.Nb.of.nucleotides",
|
|
78 "FR1.IMGT.t.a",
|
|
79 "FR1.IMGT.t.g",
|
|
80 "FR3.IMGT.c.t",
|
|
81 "FR1.IMGT.t.c",
|
|
82 "CDR2.IMGT.a.t",
|
|
83 "FR2.IMGT.c.t",
|
|
84 "CDR1.IMGT.g.t",
|
|
85 "CDR2.IMGT.t.g",
|
|
86 "FR1.IMGT.Nb.of.nucleotides",
|
|
87 "CDR1.IMGT.c.g",
|
|
88 "CDR2.IMGT.t.c",
|
|
89 "FR3.IMGT.g.a",
|
|
90 "CDR1.IMGT.a.c",
|
|
91 "FR2.IMGT.c.a",
|
|
92 "FR3.IMGT.Nb.of.mutations",
|
|
93 "FR2.IMGT.c.g",
|
|
94 "CDR2.IMGT.g.c",
|
|
95 "FR1.IMGT.g.c",
|
|
96 "CDR2.IMGT.c.t",
|
|
97 "FR3.IMGT.c.a",
|
|
98 "CDR1.IMGT.c.a",
|
|
99 "CDR2.IMGT.c.g",
|
|
100 "CDR2.IMGT.c.a",
|
42
|
101 "FR1.IMGT.c.t",
|
|
102 "FR1.IMGT.Nb.of.silent.mutations",
|
|
103 "FR2.IMGT.Nb.of.silent.mutations",
|
|
104 "FR3.IMGT.Nb.of.silent.mutations",
|
|
105 "FR1.IMGT.Nb.of.nonsilent.mutations",
|
|
106 "FR2.IMGT.Nb.of.nonsilent.mutations",
|
|
107 "FR3.IMGT.Nb.of.nonsilent.mutations")
|
0
|
108
|
|
109 for(col in cleanup_columns){
|
|
110 dat[,col] = gsub("\\(.*\\)", "", dat[,col])
|
|
111 #dat[dat[,col] == "",] = "0"
|
|
112 dat[,col] = as.numeric(dat[,col])
|
|
113 dat[is.na(dat[,col]),] = 0
|
|
114 }
|
|
115
|
22
|
116 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
|
|
117 if(!include_fr1){
|
|
118 regions = c("CDR1", "FR2", "CDR2", "FR3")
|
|
119 }
|
0
|
120
|
22
|
121 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
|
0
|
122
|
22
|
123 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
|
|
124 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
|
|
125
|
|
126 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
|
|
127 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
|
|
128
|
|
129 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
|
|
130 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
|
|
131
|
|
132 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
|
|
133 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
|
0
|
134
|
|
135
|
22
|
136 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
|
|
137 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
|
0
|
138
|
49
|
139
|
|
140 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
|
|
141 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
|
22
|
142 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
|
0
|
143
|
49
|
144 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
|
|
145 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
|
|
146
|
|
147 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
|
|
148 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
|
|
149 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
|
|
150
|
|
151
|
24
|
152 FRRegions = regions[grepl("FR", regions)]
|
|
153 CDRRegions = regions[grepl("CDR", regions)]
|
|
154
|
|
155 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
|
|
156 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
|
23
|
157
|
24
|
158 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
|
|
159 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
|
|
160
|
|
161 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
|
|
162 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
|
|
163
|
|
164 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
|
|
165 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
|
0
|
166
|
49
|
167 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
|
40
|
168
|
|
169 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
0
|
170
|
4
|
171 setwd(outputdir)
|
|
172
|
53
|
173
|
|
174 calculate_result = function(i, gene, dat, matrx, f, fname, name){
|
4
|
175 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),]
|
53
|
176
|
4
|
177 j = i - 1
|
|
178 x = (j * 3) + 1
|
|
179 y = (j * 3) + 2
|
|
180 z = (j * 3) + 3
|
53
|
181
|
|
182 if(nrow(tmp) > 0){
|
|
183
|
|
184 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
|
|
185 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
|
|
186 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
|
|
187
|
|
188 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
|
|
189 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
|
|
190 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
|
|
191
|
|
192 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
|
|
193 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
|
|
194 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
|
|
195
|
|
196 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
|
|
197 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
|
|
198 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
|
|
199
|
|
200 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
|
|
201 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
|
|
202 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
|
|
203
|
|
204 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
|
|
205 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
|
|
206 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
|
|
207
|
|
208 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
|
|
209 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
|
|
210 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
|
|
211
|
|
212 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
|
|
213 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
|
|
214 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
|
|
215
|
|
216 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
|
|
217 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
|
|
218 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
|
|
219 }
|
4
|
220
|
22
|
221 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
|
4
|
222 row.names(transitionTable) = c("A", "C", "G", "T")
|
|
223 transitionTable["A","A"] = NA
|
|
224 transitionTable["C","C"] = NA
|
|
225 transitionTable["G","G"] = NA
|
|
226 transitionTable["T","T"] = NA
|
22
|
227
|
|
228 if(nrow(tmp) > 0){
|
|
229 for(nt1 in nts){
|
|
230 for(nt2 in nts){
|
|
231 if(nt1 == nt2){
|
|
232 next
|
|
233 }
|
|
234 NT1 = LETTERS[letters == nt1]
|
|
235 NT2 = LETTERS[letters == nt2]
|
|
236 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
|
|
237 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
|
|
238 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
|
|
239 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
|
|
240 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
|
|
241 if(include_fr1){
|
|
242 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
|
|
243 } else {
|
|
244 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
|
|
245 }
|
|
246 }
|
|
247 }
|
|
248 }
|
4
|
249
|
|
250
|
53
|
251 print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
|
|
252
|
|
253 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
|
|
254 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
|
4
|
255
|
53
|
256 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
|
|
257 cat(length(tmp$Sequence.ID), file=paste(name, "_", fname, "_n.txt" ,sep=""))
|
|
258
|
|
259 matrx
|
4
|
260 }
|
|
261
|
53
|
262 nts = c("a", "c", "g", "t")
|
|
263 zeros=rep(0, 4)
|
49
|
264
|
53
|
265 funcs = c(median, sum, mean)
|
|
266 fnames = c("median", "sum", "mean")
|
49
|
267
|
53
|
268 for(i in 1:length(funcs)){
|
|
269 func = funcs[[i]]
|
|
270 fname = fnames[[i]]
|
|
271
|
|
272 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9)
|
49
|
273
|
53
|
274 for(i in 1:length(genes)){
|
|
275 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i])
|
|
276 }
|
0
|
277
|
53
|
278 matrx = calculate_result(i + 1, ".*", dat, matrx, func, fname, name="all")
|
|
279
|
|
280 result = data.frame(matrx)
|
|
281 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
|
|
282
|
|
283 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F)
|
4
|
284 }
|
|
285
|
|
286
|
|
287 if (!("ggplot2" %in% rownames(installed.packages()))) {
|
|
288 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
|
|
289 }
|
49
|
290
|
4
|
291
|
|
292 genesForPlot = gsub("[0-9]", "", dat$best_match)
|
|
293 genesForPlot = data.frame(table(genesForPlot))
|
|
294 colnames(genesForPlot) = c("Gene","Freq")
|
|
295 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
|
26
|
296 write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
297
|
4
|
298
|
|
299 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
|
|
300 pc = pc + geom_bar(width = 1, stat = "identity")
|
|
301 pc = pc + coord_polar(theta="y")
|
26
|
302 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")"))
|
4
|
303
|
|
304 png(filename="all.png")
|
|
305 pc
|
|
306 dev.off()
|
|
307
|
|
308
|
|
309 #blegh
|
|
310 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match
|
|
311 if(length(genesForPlot) > 0){
|
|
312 genesForPlot = data.frame(table(genesForPlot))
|
|
313 colnames(genesForPlot) = c("Gene","Freq")
|
|
314 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
|
|
315
|
|
316 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
|
|
317 pc = pc + geom_bar(width = 1, stat = "identity")
|
|
318 pc = pc + coord_polar(theta="y")
|
26
|
319 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")"))
|
|
320 write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
4
|
321
|
|
322 png(filename="ca.png")
|
|
323 print(pc)
|
|
324 dev.off()
|
0
|
325 }
|
|
326
|
4
|
327 genesForPlot = dat[grepl("cg", dat$best_match),]$best_match
|
|
328 if(length(genesForPlot) > 0){
|
|
329 genesForPlot = data.frame(table(genesForPlot))
|
|
330 colnames(genesForPlot) = c("Gene","Freq")
|
|
331 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
|
|
332
|
|
333 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
|
|
334 pc = pc + geom_bar(width = 1, stat = "identity")
|
|
335 pc = pc + coord_polar(theta="y")
|
26
|
336 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")"))
|
|
337 write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
0
|
338
|
4
|
339 png(filename="cg.png")
|
|
340 print(pc)
|
|
341 dev.off()
|
|
342 }
|
22
|
343
|
|
344 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
|
|
345
|
26
|
346 p = ggplot(dat, aes(best_match, percentage_mutations))
|
47
|
347 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
|
22
|
348 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot")
|
|
349
|
|
350 png(filename="scatter.png")
|
|
351 print(p)
|
|
352 dev.off()
|
|
353
|
49
|
354 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
355
|
|
356 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
|
|
357
|
|
358
|
|
359
|
|
360
|
|
361
|
|
362
|
|
363 dat$best_match_class = substr(dat$best_match, 0, 2)
|
|
364 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
|
|
365 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
|
|
366
|
|
367 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
|
|
368
|
|
369 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count))
|
|
370 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge")
|
|
371 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class")
|
|
372
|
|
373 png(filename="frequency_ranges.png")
|
|
374 print(p)
|
|
375 dev.off()
|
|
376
|
|
377 frequency_bins_data_by_class = frequency_bins_data
|
|
378
|
|
379 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
380
|
|
381 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")])
|
|
382
|
|
383 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
384
|
|
385
|
|
386 #frequency_bins_data_by_class
|
|
387 #frequency_ranges_subclasses.txt
|
|
388
|
22
|
389
|
|
390
|
|
391
|
|
392
|
|
393
|
|
394
|
|
395
|
|
396
|
|
397
|
|
398
|
|
399
|
|
400
|
|
401
|
|
402
|
|
403
|
|
404
|
|
405
|
|
406
|
|
407
|
|
408
|
|
409
|
|
410
|
|
411
|
|
412
|
|
413
|
|
414
|