Mercurial > repos > davidvanzessen > mutation_analysis
diff mutation_analysis.r @ 49:5c6b9e99d576 draft
Uploaded
author | davidvanzessen |
---|---|
date | Wed, 18 Nov 2015 05:55:04 -0500 |
parents | 099cc1254f74 |
children | 7290a88ea202 |
line wrap: on
line diff
--- a/mutation_analysis.r Thu Nov 12 09:46:37 2015 -0500 +++ b/mutation_analysis.r Wed Nov 18 05:55:04 2015 -0500 @@ -1,3 +1,6 @@ +library(data.table) +library(ggplot2) + args <- commandArgs(trailingOnly = TRUE) input = args[1] @@ -133,9 +136,19 @@ transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) -totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="") + +totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") +#totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) +transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") +dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) + +totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") +#totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") +dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) + + FRRegions = regions[grepl("FR", regions)] CDRRegions = regions[grepl("CDR", regions)] @@ -151,7 +164,7 @@ CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) -mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") +mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) @@ -159,7 +172,7 @@ nts = c("a", "c", "g", "t") zeros=rep(0, 4) -matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=7) +matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) for(i in 1:length(genes)){ gene = genes[i] tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] @@ -173,24 +186,38 @@ matrx[1,x] = sum(tmp$VRegionMutations) matrx[1,y] = sum(tmp$VRegionNucleotides) matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) + matrx[2,x] = sum(tmp$transitionMutations) matrx[2,y] = sum(tmp$VRegionMutations) matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) + matrx[3,x] = sum(tmp$transversionMutations) matrx[3,y] = sum(tmp$VRegionMutations) matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) + matrx[4,x] = sum(tmp$transitionMutationsAtGC) matrx[4,y] = sum(tmp$totalMutationsAtGC) matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) + matrx[5,x] = sum(tmp$totalMutationsAtGC) matrx[5,y] = sum(tmp$VRegionMutations) matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) - matrx[6,x] = sum(tmp$nonSilentMutationsFR) - matrx[6,y] = sum(tmp$silentMutationsFR) - matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1) - matrx[7,x] = sum(tmp$nonSilentMutationsCDR) - matrx[7,y] = sum(tmp$silentMutationsCDR) - matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1) + + matrx[6,x] = sum(tmp$transitionMutationsAtAT) + matrx[6,y] = sum(tmp$totalMutationsAtAT) + matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) + + matrx[7,x] = sum(tmp$totalMutationsAtAT) + matrx[7,y] = sum(tmp$VRegionMutations) + matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) + + matrx[8,x] = sum(tmp$nonSilentMutationsFR) + matrx[8,y] = sum(tmp$silentMutationsFR) + matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) + + matrx[9,x] = sum(tmp$nonSilentMutationsCDR) + matrx[9,y] = sum(tmp$silentMutationsCDR) + matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) @@ -239,24 +266,38 @@ matrx[1,x] = sum(tmp$VRegionMutations) matrx[1,y] = sum(tmp$VRegionNucleotides) matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) + matrx[2,x] = sum(tmp$transitionMutations) matrx[2,y] = sum(tmp$VRegionMutations) matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) + matrx[3,x] = sum(tmp$transversionMutations) matrx[3,y] = sum(tmp$VRegionMutations) matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) + matrx[4,x] = sum(tmp$transitionMutationsAtGC) matrx[4,y] = sum(tmp$totalMutationsAtGC) matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) + matrx[5,x] = sum(tmp$totalMutationsAtGC) matrx[5,y] = sum(tmp$VRegionMutations) matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) -matrx[6,x] = sum(tmp$nonSilentMutationsFR) -matrx[6,y] = sum(tmp$silentMutationsFR) -matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1) -matrx[7,x] = sum(tmp$nonSilentMutationsCDR) -matrx[7,y] = sum(tmp$silentMutationsCDR) -matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1) + +matrx[6,x] = sum(tmp$transitionMutationsAtAT) +matrx[6,y] = sum(tmp$totalMutationsAtAT) +matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) + +matrx[7,x] = sum(tmp$totalMutationsAtAT) +matrx[7,y] = sum(tmp$VRegionMutations) +matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) + +matrx[8,x] = sum(tmp$nonSilentMutationsFR) +matrx[8,y] = sum(tmp$silentMutationsFR) +matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) + +matrx[9,x] = sum(tmp$nonSilentMutationsCDR) +matrx[9,y] = sum(tmp$silentMutationsCDR) +matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) row.names(transitionTable) = c("A", "C", "G", "T") @@ -293,7 +334,7 @@ result = data.frame(matrx) -row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)", "FR R/S (ratio)", "CDR R/S (ratio)") +row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) @@ -301,7 +342,7 @@ if (!("ggplot2" %in% rownames(installed.packages()))) { install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") } -library(ggplot2) + genesForPlot = gsub("[0-9]", "", dat$best_match) genesForPlot = data.frame(table(genesForPlot)) @@ -360,13 +401,46 @@ p = ggplot(dat, aes(best_match, percentage_mutations)) p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") -write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) - png(filename="scatter.png") print(p) dev.off() +write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) + +write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) + + + + + + +dat$best_match_class = substr(dat$best_match, 0, 2) +freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") +dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) + +frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) + +p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count)) +p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") +p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") + +png(filename="frequency_ranges.png") +print(p) +dev.off() + +frequency_bins_data_by_class = frequency_bins_data + +write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) + +frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")]) + +write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) + + +#frequency_bins_data_by_class +#frequency_ranges_subclasses.txt + @@ -393,8 +467,3 @@ - - - - -