0
|
1 args <- commandArgs(trailingOnly = TRUE)
|
|
2
|
|
3 input = args[1]
|
4
|
4 genes = unlist(strsplit(args[2], ","))
|
0
|
5 outputdir = args[3]
|
22
|
6 print(args[4])
|
|
7 include_fr1 = ifelse(args[4] == "yes", T, F)
|
0
|
8 setwd(outputdir)
|
|
9
|
|
10 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
|
|
11
|
|
12 if(length(dat$Sequence.ID) == 0){
|
4
|
13 setwd(outputdir)
|
|
14 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
|
|
15 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)")
|
|
16 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
|
|
17 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
|
|
18 row.names(transitionTable) = c("A", "C", "G", "T")
|
|
19 transitionTable["A","A"] = NA
|
|
20 transitionTable["C","C"] = NA
|
|
21 transitionTable["G","G"] = NA
|
|
22 transitionTable["T","T"] = NA
|
|
23 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
|
|
24 cat("0", file="n.txt")
|
|
25 stop("No data")
|
0
|
26 }
|
|
27
|
|
28
|
|
29
|
|
30 cleanup_columns = c("FR1.IMGT.c.a",
|
|
31 "FR2.IMGT.g.t",
|
|
32 "CDR1.IMGT.Nb.of.nucleotides",
|
|
33 "CDR2.IMGT.t.a",
|
|
34 "FR1.IMGT.c.g",
|
|
35 "CDR1.IMGT.c.t",
|
|
36 "FR2.IMGT.a.c",
|
|
37 "FR2.IMGT.Nb.of.mutations",
|
|
38 "FR2.IMGT.g.c",
|
|
39 "FR2.IMGT.a.g",
|
|
40 "FR3.IMGT.t.a",
|
|
41 "FR3.IMGT.t.c",
|
|
42 "FR2.IMGT.g.a",
|
|
43 "FR3.IMGT.c.g",
|
|
44 "FR1.IMGT.Nb.of.mutations",
|
|
45 "CDR1.IMGT.g.a",
|
|
46 "CDR1.IMGT.t.g",
|
|
47 "CDR1.IMGT.g.c",
|
|
48 "CDR2.IMGT.Nb.of.nucleotides",
|
|
49 "FR2.IMGT.a.t",
|
|
50 "CDR1.IMGT.Nb.of.mutations",
|
|
51 "CDR1.IMGT.a.g",
|
|
52 "FR3.IMGT.a.c",
|
|
53 "FR1.IMGT.g.a",
|
|
54 "FR3.IMGT.a.g",
|
|
55 "FR1.IMGT.a.t",
|
|
56 "CDR2.IMGT.a.g",
|
|
57 "CDR2.IMGT.Nb.of.mutations",
|
|
58 "CDR2.IMGT.g.t",
|
|
59 "CDR2.IMGT.a.c",
|
|
60 "CDR1.IMGT.t.c",
|
|
61 "FR3.IMGT.g.c",
|
|
62 "FR1.IMGT.g.t",
|
|
63 "FR3.IMGT.g.t",
|
|
64 "CDR1.IMGT.a.t",
|
|
65 "FR1.IMGT.a.g",
|
|
66 "FR3.IMGT.a.t",
|
|
67 "FR3.IMGT.Nb.of.nucleotides",
|
|
68 "FR2.IMGT.t.c",
|
|
69 "CDR2.IMGT.g.a",
|
|
70 "FR2.IMGT.t.a",
|
|
71 "CDR1.IMGT.t.a",
|
|
72 "FR2.IMGT.t.g",
|
|
73 "FR3.IMGT.t.g",
|
|
74 "FR2.IMGT.Nb.of.nucleotides",
|
|
75 "FR1.IMGT.t.a",
|
|
76 "FR1.IMGT.t.g",
|
|
77 "FR3.IMGT.c.t",
|
|
78 "FR1.IMGT.t.c",
|
|
79 "CDR2.IMGT.a.t",
|
|
80 "FR2.IMGT.c.t",
|
|
81 "CDR1.IMGT.g.t",
|
|
82 "CDR2.IMGT.t.g",
|
|
83 "FR1.IMGT.Nb.of.nucleotides",
|
|
84 "CDR1.IMGT.c.g",
|
|
85 "CDR2.IMGT.t.c",
|
|
86 "FR3.IMGT.g.a",
|
|
87 "CDR1.IMGT.a.c",
|
|
88 "FR2.IMGT.c.a",
|
|
89 "FR3.IMGT.Nb.of.mutations",
|
|
90 "FR2.IMGT.c.g",
|
|
91 "CDR2.IMGT.g.c",
|
|
92 "FR1.IMGT.g.c",
|
|
93 "CDR2.IMGT.c.t",
|
|
94 "FR3.IMGT.c.a",
|
|
95 "CDR1.IMGT.c.a",
|
|
96 "CDR2.IMGT.c.g",
|
|
97 "CDR2.IMGT.c.a",
|
42
|
98 "FR1.IMGT.c.t",
|
|
99 "FR1.IMGT.Nb.of.silent.mutations",
|
|
100 "FR2.IMGT.Nb.of.silent.mutations",
|
|
101 "FR3.IMGT.Nb.of.silent.mutations",
|
|
102 "FR1.IMGT.Nb.of.nonsilent.mutations",
|
|
103 "FR2.IMGT.Nb.of.nonsilent.mutations",
|
|
104 "FR3.IMGT.Nb.of.nonsilent.mutations")
|
0
|
105
|
|
106 for(col in cleanup_columns){
|
|
107 dat[,col] = gsub("\\(.*\\)", "", dat[,col])
|
|
108 #dat[dat[,col] == "",] = "0"
|
|
109 dat[,col] = as.numeric(dat[,col])
|
|
110 dat[is.na(dat[,col]),] = 0
|
|
111 }
|
|
112
|
22
|
113 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
|
|
114 if(!include_fr1){
|
|
115 regions = c("CDR1", "FR2", "CDR2", "FR3")
|
|
116 }
|
0
|
117
|
22
|
118 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
|
0
|
119
|
22
|
120 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
|
|
121 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
|
|
122
|
|
123 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
|
|
124 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
|
|
125
|
|
126 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
|
|
127 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
|
|
128
|
|
129 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
|
|
130 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
|
0
|
131
|
|
132
|
22
|
133 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
|
|
134 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
|
0
|
135
|
22
|
136 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="")
|
|
137 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
|
0
|
138
|
24
|
139 FRRegions = regions[grepl("FR", regions)]
|
|
140 CDRRegions = regions[grepl("CDR", regions)]
|
|
141
|
|
142 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
|
|
143 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
|
23
|
144
|
24
|
145 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
|
|
146 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
|
|
147
|
|
148 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
|
|
149 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
|
|
150
|
|
151 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
|
|
152 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
|
0
|
153
|
40
|
154 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
|
|
155
|
|
156 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
0
|
157
|
4
|
158 setwd(outputdir)
|
|
159
|
26
|
160 nts = c("a", "c", "g", "t")
|
22
|
161 zeros=rep(0, 4)
|
24
|
162 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=7)
|
4
|
163 for(i in 1:length(genes)){
|
|
164 gene = genes[i]
|
|
165 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),]
|
|
166 if(gene == "."){
|
|
167 tmp = dat
|
|
168 }
|
|
169 j = i - 1
|
|
170 x = (j * 3) + 1
|
|
171 y = (j * 3) + 2
|
|
172 z = (j * 3) + 3
|
|
173 matrx[1,x] = sum(tmp$VRegionMutations)
|
|
174 matrx[1,y] = sum(tmp$VRegionNucleotides)
|
|
175 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
|
|
176 matrx[2,x] = sum(tmp$transitionMutations)
|
|
177 matrx[2,y] = sum(tmp$VRegionMutations)
|
|
178 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
|
|
179 matrx[3,x] = sum(tmp$transversionMutations)
|
|
180 matrx[3,y] = sum(tmp$VRegionMutations)
|
|
181 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
|
|
182 matrx[4,x] = sum(tmp$transitionMutationsAtGC)
|
|
183 matrx[4,y] = sum(tmp$totalMutationsAtGC)
|
|
184 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
|
|
185 matrx[5,x] = sum(tmp$totalMutationsAtGC)
|
|
186 matrx[5,y] = sum(tmp$VRegionMutations)
|
|
187 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
|
25
|
188 matrx[6,x] = sum(tmp$nonSilentMutationsFR)
|
|
189 matrx[6,y] = sum(tmp$silentMutationsFR)
|
|
190 matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1)
|
|
191 matrx[7,x] = sum(tmp$nonSilentMutationsCDR)
|
|
192 matrx[7,y] = sum(tmp$silentMutationsCDR)
|
|
193 matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1)
|
23
|
194
|
4
|
195
|
22
|
196 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
|
4
|
197 row.names(transitionTable) = c("A", "C", "G", "T")
|
|
198 transitionTable["A","A"] = NA
|
|
199 transitionTable["C","C"] = NA
|
|
200 transitionTable["G","G"] = NA
|
|
201 transitionTable["T","T"] = NA
|
22
|
202
|
|
203 if(nrow(tmp) > 0){
|
|
204 for(nt1 in nts){
|
|
205 for(nt2 in nts){
|
|
206 if(nt1 == nt2){
|
|
207 next
|
|
208 }
|
|
209 NT1 = LETTERS[letters == nt1]
|
|
210 NT2 = LETTERS[letters == nt2]
|
|
211 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
|
|
212 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
|
|
213 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
|
|
214 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
|
|
215 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
|
|
216 if(include_fr1){
|
|
217 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
|
|
218 } else {
|
|
219 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
|
|
220 }
|
|
221 }
|
|
222 }
|
|
223 }
|
4
|
224
|
|
225
|
|
226 write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
|
|
227 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
|
|
228
|
|
229 cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep=""))
|
|
230 cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep=""))
|
|
231 }
|
|
232
|
|
233 #again for all of the data
|
|
234 tmp = dat
|
|
235 j = i
|
|
236 x = (j * 3) + 1
|
|
237 y = (j * 3) + 2
|
|
238 z = (j * 3) + 3
|
|
239 matrx[1,x] = sum(tmp$VRegionMutations)
|
|
240 matrx[1,y] = sum(tmp$VRegionNucleotides)
|
|
241 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
|
|
242 matrx[2,x] = sum(tmp$transitionMutations)
|
|
243 matrx[2,y] = sum(tmp$VRegionMutations)
|
|
244 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
|
|
245 matrx[3,x] = sum(tmp$transversionMutations)
|
|
246 matrx[3,y] = sum(tmp$VRegionMutations)
|
|
247 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
|
|
248 matrx[4,x] = sum(tmp$transitionMutationsAtGC)
|
|
249 matrx[4,y] = sum(tmp$totalMutationsAtGC)
|
|
250 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
|
|
251 matrx[5,x] = sum(tmp$totalMutationsAtGC)
|
|
252 matrx[5,y] = sum(tmp$VRegionMutations)
|
|
253 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
|
25
|
254 matrx[6,x] = sum(tmp$nonSilentMutationsFR)
|
|
255 matrx[6,y] = sum(tmp$silentMutationsFR)
|
|
256 matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1)
|
|
257 matrx[7,x] = sum(tmp$nonSilentMutationsCDR)
|
|
258 matrx[7,y] = sum(tmp$silentMutationsCDR)
|
|
259 matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1)
|
0
|
260
|
|
261 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4)
|
|
262 row.names(transitionTable) = c("A", "C", "G", "T")
|
|
263 transitionTable["A","A"] = NA
|
|
264 transitionTable["C","C"] = NA
|
|
265 transitionTable["G","G"] = NA
|
|
266 transitionTable["T","T"] = NA
|
|
267
|
|
268
|
|
269 for(nt1 in nts){
|
4
|
270 for(nt2 in nts){
|
|
271 if(nt1 == nt2){
|
|
272 next
|
|
273 }
|
|
274 NT1 = LETTERS[letters == nt1]
|
|
275 NT2 = LETTERS[letters == nt2]
|
|
276 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
|
|
277 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
|
|
278 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
|
|
279 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
|
|
280 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
|
22
|
281 if(include_fr1){
|
|
282 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
|
|
283 } else {
|
|
284 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
|
|
285 }
|
4
|
286 }
|
|
287 }
|
|
288 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
|
|
289 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
290 cat(matrx[1,x], file="total_value.txt")
|
|
291 cat(length(tmp$Sequence.ID), file="total_n.txt")
|
|
292
|
|
293
|
|
294
|
|
295 result = data.frame(matrx)
|
33
|
296 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
|
4
|
297
|
|
298 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
|
|
299
|
|
300
|
|
301 if (!("ggplot2" %in% rownames(installed.packages()))) {
|
|
302 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
|
|
303 }
|
|
304 library(ggplot2)
|
|
305
|
|
306 genesForPlot = gsub("[0-9]", "", dat$best_match)
|
|
307 genesForPlot = data.frame(table(genesForPlot))
|
|
308 colnames(genesForPlot) = c("Gene","Freq")
|
|
309 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
|
26
|
310 write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
311
|
4
|
312
|
|
313 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
|
|
314 pc = pc + geom_bar(width = 1, stat = "identity")
|
|
315 pc = pc + coord_polar(theta="y")
|
26
|
316 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")"))
|
4
|
317
|
|
318 png(filename="all.png")
|
|
319 pc
|
|
320 dev.off()
|
|
321
|
|
322
|
|
323 #blegh
|
|
324 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match
|
|
325 if(length(genesForPlot) > 0){
|
|
326 genesForPlot = data.frame(table(genesForPlot))
|
|
327 colnames(genesForPlot) = c("Gene","Freq")
|
|
328 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
|
|
329
|
|
330 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
|
|
331 pc = pc + geom_bar(width = 1, stat = "identity")
|
|
332 pc = pc + coord_polar(theta="y")
|
26
|
333 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")"))
|
|
334 write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
4
|
335
|
|
336 png(filename="ca.png")
|
|
337 print(pc)
|
|
338 dev.off()
|
0
|
339 }
|
|
340
|
4
|
341 genesForPlot = dat[grepl("cg", dat$best_match),]$best_match
|
|
342 if(length(genesForPlot) > 0){
|
|
343 genesForPlot = data.frame(table(genesForPlot))
|
|
344 colnames(genesForPlot) = c("Gene","Freq")
|
|
345 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
|
|
346
|
|
347 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
|
|
348 pc = pc + geom_bar(width = 1, stat = "identity")
|
|
349 pc = pc + coord_polar(theta="y")
|
26
|
350 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")"))
|
|
351 write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
0
|
352
|
4
|
353 png(filename="cg.png")
|
|
354 print(pc)
|
|
355 dev.off()
|
|
356 }
|
22
|
357
|
|
358 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
|
|
359
|
26
|
360 p = ggplot(dat, aes(best_match, percentage_mutations))
|
23
|
361 p = p + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) + geom_point(aes(colour=best_match), position="jitter")
|
22
|
362 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot")
|
26
|
363 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
|
|
364
|
22
|
365
|
|
366 png(filename="scatter.png")
|
|
367 print(p)
|
|
368 dev.off()
|
|
369
|
|
370
|
|
371
|
|
372
|
|
373
|
|
374
|
|
375
|
|
376
|
|
377
|
|
378
|
|
379
|
|
380
|
|
381
|
|
382
|
|
383
|
|
384
|
|
385
|
|
386
|
|
387
|
|
388
|
|
389
|
|
390
|
|
391
|
|
392
|
|
393
|
|
394
|
|
395
|
|
396
|
|
397
|
|
398
|
|
399
|
|
400
|