Mercurial > repos > davidvanzessen > mutation_analysis
changeset 23:28b8d980db22 draft
Uploaded
author | davidvanzessen |
---|---|
date | Tue, 07 Apr 2015 04:46:35 -0400 |
parents | d84c9791d8c4 |
children | 31eee1b3d7df |
files | mutation_analysis.r |
diffstat | 1 files changed, 17 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/mutation_analysis.r Tue Apr 07 03:52:34 2015 -0400 +++ b/mutation_analysis.r Tue Apr 07 04:46:35 2015 -0400 @@ -130,13 +130,20 @@ totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="") dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) +silentMutations_columns = paste(regions, ".IMGT.Nb.of.silent.mutations", sep="") +silentMutations_columns +dat[,silentMutations_columns] +dat$silentMutations = apply(dat, FUN=sum_by_row, 1, columns=silentMutations_columns) + +nonSilentMutations_columns = paste(regions, ".IMGT.Nb.of.nonsilent.mutations", sep="") +dat$nonSilentMutations = apply(dat, FUN=sum_by_row, 1, columns=nonSilentMutations_columns) setwd(outputdir) nts = c("a", "t", "g", "c") zeros=rep(0, 4) -matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=5) +matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=6) for(i in 1:length(genes)){ gene = genes[i] tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] @@ -162,6 +169,10 @@ matrx[5,x] = sum(tmp$totalMutationsAtGC) matrx[5,y] = sum(tmp$VRegionMutations) matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) + matrx[6,x] = sum(tmp$silentMutations) + matrx[6,y] = sum(tmp$nonSilentMutations) + matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) + transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) row.names(transitionTable) = c("A", "C", "G", "T") @@ -221,6 +232,9 @@ matrx[5,x] = sum(tmp$totalMutationsAtGC) matrx[5,y] = sum(tmp$VRegionMutations) matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) +matrx[6,x] = sum(tmp$silentMutations) +matrx[6,y] = sum(tmp$nonSilentMutations) +matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) row.names(transitionTable) = c("A", "C", "G", "T") @@ -257,7 +271,7 @@ result = data.frame(matrx) -row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)") +row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)", "Silent/Non Silent (%)") write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) @@ -320,7 +334,7 @@ dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) p = ggplot(dat, aes(best_match, percentage_mutations))# + scale_y_log10(breaks=scales,labels=scales) -p = p + geom_point(aes(colour=best_match), position="jitter") +p = p + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) + geom_point(aes(colour=best_match), position="jitter") p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") png(filename="scatter.png")