Mercurial > repos > davidvanzessen > mutation_analysis
comparison mutation_analysis.r @ 53:7290a88ea202 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 29 Feb 2016 10:49:39 -0500 |
parents | 5c6b9e99d576 |
children | 3636d5aaa127 |
comparison
equal
deleted
inserted
replaced
52:d3542f87a304 | 53:7290a88ea202 |
---|---|
168 | 168 |
169 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | 169 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) |
170 | 170 |
171 setwd(outputdir) | 171 setwd(outputdir) |
172 | 172 |
173 nts = c("a", "c", "g", "t") | 173 |
174 zeros=rep(0, 4) | 174 calculate_result = function(i, gene, dat, matrx, f, fname, name){ |
175 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) | |
176 for(i in 1:length(genes)){ | |
177 gene = genes[i] | |
178 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] | 175 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] |
179 if(gene == "."){ | 176 |
180 tmp = dat | |
181 } | |
182 j = i - 1 | 177 j = i - 1 |
183 x = (j * 3) + 1 | 178 x = (j * 3) + 1 |
184 y = (j * 3) + 2 | 179 y = (j * 3) + 2 |
185 z = (j * 3) + 3 | 180 z = (j * 3) + 3 |
186 matrx[1,x] = sum(tmp$VRegionMutations) | 181 |
187 matrx[1,y] = sum(tmp$VRegionNucleotides) | 182 if(nrow(tmp) > 0){ |
188 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | 183 |
189 | 184 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
190 matrx[2,x] = sum(tmp$transitionMutations) | 185 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) |
191 matrx[2,y] = sum(tmp$VRegionMutations) | 186 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) |
192 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | 187 |
193 | 188 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) |
194 matrx[3,x] = sum(tmp$transversionMutations) | 189 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
195 matrx[3,y] = sum(tmp$VRegionMutations) | 190 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) |
196 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | 191 |
197 | 192 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) |
198 matrx[4,x] = sum(tmp$transitionMutationsAtGC) | 193 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
199 matrx[4,y] = sum(tmp$totalMutationsAtGC) | 194 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) |
200 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | 195 |
201 | 196 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) |
202 matrx[5,x] = sum(tmp$totalMutationsAtGC) | 197 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) |
203 matrx[5,y] = sum(tmp$VRegionMutations) | 198 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) |
204 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | 199 |
205 | 200 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) |
206 matrx[6,x] = sum(tmp$transitionMutationsAtAT) | 201 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
207 matrx[6,y] = sum(tmp$totalMutationsAtAT) | 202 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) |
208 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | 203 |
209 | 204 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) |
210 matrx[7,x] = sum(tmp$totalMutationsAtAT) | 205 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) |
211 matrx[7,y] = sum(tmp$VRegionMutations) | 206 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) |
212 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | 207 |
213 | 208 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) |
214 matrx[8,x] = sum(tmp$nonSilentMutationsFR) | 209 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
215 matrx[8,y] = sum(tmp$silentMutationsFR) | 210 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) |
216 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | 211 |
217 | 212 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) |
218 matrx[9,x] = sum(tmp$nonSilentMutationsCDR) | 213 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) |
219 matrx[9,y] = sum(tmp$silentMutationsCDR) | 214 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) |
220 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | 215 |
221 | 216 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) |
217 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | |
218 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
219 } | |
222 | 220 |
223 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | 221 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) |
224 row.names(transitionTable) = c("A", "C", "G", "T") | 222 row.names(transitionTable) = c("A", "C", "G", "T") |
225 transitionTable["A","A"] = NA | 223 transitionTable["A","A"] = NA |
226 transitionTable["C","C"] = NA | 224 transitionTable["C","C"] = NA |
248 } | 246 } |
249 } | 247 } |
250 } | 248 } |
251 | 249 |
252 | 250 |
253 write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 251 print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) |
254 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | 252 |
255 | 253 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) |
256 cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep="")) | 254 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) |
257 cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep="")) | 255 |
258 } | 256 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) |
259 | 257 cat(length(tmp$Sequence.ID), file=paste(name, "_", fname, "_n.txt" ,sep="")) |
260 #again for all of the data | 258 |
261 tmp = dat | 259 matrx |
262 j = i | 260 } |
263 x = (j * 3) + 1 | 261 |
264 y = (j * 3) + 2 | 262 nts = c("a", "c", "g", "t") |
265 z = (j * 3) + 3 | 263 zeros=rep(0, 4) |
266 matrx[1,x] = sum(tmp$VRegionMutations) | 264 |
267 matrx[1,y] = sum(tmp$VRegionNucleotides) | 265 funcs = c(median, sum, mean) |
268 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | 266 fnames = c("median", "sum", "mean") |
269 | 267 |
270 matrx[2,x] = sum(tmp$transitionMutations) | 268 for(i in 1:length(funcs)){ |
271 matrx[2,y] = sum(tmp$VRegionMutations) | 269 func = funcs[[i]] |
272 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | 270 fname = fnames[[i]] |
273 | 271 |
274 matrx[3,x] = sum(tmp$transversionMutations) | 272 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) |
275 matrx[3,y] = sum(tmp$VRegionMutations) | 273 |
276 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | 274 for(i in 1:length(genes)){ |
277 | 275 matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i]) |
278 matrx[4,x] = sum(tmp$transitionMutationsAtGC) | |
279 matrx[4,y] = sum(tmp$totalMutationsAtGC) | |
280 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
281 | |
282 matrx[5,x] = sum(tmp$totalMutationsAtGC) | |
283 matrx[5,y] = sum(tmp$VRegionMutations) | |
284 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
285 | |
286 matrx[6,x] = sum(tmp$transitionMutationsAtAT) | |
287 matrx[6,y] = sum(tmp$totalMutationsAtAT) | |
288 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | |
289 | |
290 matrx[7,x] = sum(tmp$totalMutationsAtAT) | |
291 matrx[7,y] = sum(tmp$VRegionMutations) | |
292 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
293 | |
294 matrx[8,x] = sum(tmp$nonSilentMutationsFR) | |
295 matrx[8,y] = sum(tmp$silentMutationsFR) | |
296 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
297 | |
298 matrx[9,x] = sum(tmp$nonSilentMutationsCDR) | |
299 matrx[9,y] = sum(tmp$silentMutationsCDR) | |
300 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
301 | |
302 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) | |
303 row.names(transitionTable) = c("A", "C", "G", "T") | |
304 transitionTable["A","A"] = NA | |
305 transitionTable["C","C"] = NA | |
306 transitionTable["G","G"] = NA | |
307 transitionTable["T","T"] = NA | |
308 | |
309 | |
310 for(nt1 in nts){ | |
311 for(nt2 in nts){ | |
312 if(nt1 == nt2){ | |
313 next | |
314 } | |
315 NT1 = LETTERS[letters == nt1] | |
316 NT2 = LETTERS[letters == nt2] | |
317 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
318 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
319 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
320 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
321 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
322 if(include_fr1){ | |
323 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
324 } else { | |
325 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
326 } | |
327 } | 276 } |
328 } | 277 |
329 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | 278 matrx = calculate_result(i + 1, ".*", dat, matrx, func, fname, name="all") |
330 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T) | 279 |
331 cat(matrx[1,x], file="total_value.txt") | 280 result = data.frame(matrx) |
332 cat(length(tmp$Sequence.ID), file="total_n.txt") | 281 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") |
333 | 282 |
334 | 283 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) |
335 | 284 } |
336 result = data.frame(matrx) | |
337 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
338 | |
339 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
340 | 285 |
341 | 286 |
342 if (!("ggplot2" %in% rownames(installed.packages()))) { | 287 if (!("ggplot2" %in% rownames(installed.packages()))) { |
343 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | 288 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") |
344 } | 289 } |