Mercurial > repos > chemteam > fastpca
view fastpca.xml @ 0:7dbe8bd02431 draft default tip
"planemo upload for repository https://github.com/galaxycomputationalchemistry/galaxy-tools-compchem/ commit ee29bbfa4e78dca11e2e06d0d35a434c063ab588"
author | chemteam |
---|---|
date | Thu, 30 Jan 2020 12:58:19 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="fastpca" name="fastpca" version="@VERSION@"> <description>- dimensionality reduction of MD simulations</description> <macros> <token name="@VERSION@">0.9.1</token> </macros> <requirements> <requirement type="package" version="@VERSION@">fastpca</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ fastpca -f '$input' -p '$output_proj' #if str($inputs.cov) == 'None': -c '$output_cov' #elif str($inputs.vec) == 'None': -C '$inputs.cov' #end if #if str($inputs.vec) == 'None': -v $output_vec #else: -V '$inputs.vec' #end if #if str($inputs.stats) == 'None': -s '$output_stats' #else: -S '$inputs.stats' #end if -l '$output_val' $norm $periodic $dynamic_shift --verbose ]]></command> <inputs> <param format="tabular,xtc" name="input" type="data" label="Input data" help="Either a whitespace-separated tabular file or GROMACS XTC file."/> <section name="inputs" title="Inputs" expanded="true" help="Use these (optional) inputs to project new data onto a previously computed principal space. If not set, the PCA will be computed from scratch and will not be comparable to previous runs." > <param format="tabular" name="cov" type="data" label="Precomputed covariance/correlation matrix" optional="true"/> <param format="tabular" name="vec" type="data" label="Precomputed eigenvectors" optional="true"/> <param format="tabular" name="stats" type="data" label="Precomputed statistics (mean values, sigmas and boundary shifts)" optional="true"/> </section> <param name="norm" type="select" label="How to normalize input:" help="Generally, normalization using the covariance matrix is appropriate when the variable scales are similar, and the correlation matrix is used when variables are on different scales." > <option value="">Covariance</option> <option value="-N">Correlation</option> </param> <param name="periodic" type="boolean" label="Compute covariance and PCA on a torus?" truevalue="-P" falsevalue="" value="false" help="Useful for computing PCA on periodic data - for example, dihedral angles."/> <param name="dynamic_shift" type="boolean" label="Use dynamic shifting for periodic projection correction" truevalue="-D" falsevalue="" value="false" help="Default is fale, i.e. simply shift to region of lowest density"/> </inputs> <outputs> <data name="output_proj" format="tabular"/> <data name="output_cov" format="tabular"> <filter>inputs["cov"] == None</filter> </data> <data name="output_vec" format="tabular"> <filter>inputs["vec"] == None</filter> </data> <data name="output_stats" format="tabular"> <filter>inputs["stats"] == None</filter> </data> <data name="output_val" format="tabular"/> </outputs> <tests> <!-- fastpca -f contacts.dat -p proj.dat -c cov.dat -v vec.dat -s stats.dat -l val.dat -N --> <test> <param name="input" value="contacts.dat"/> <param name="norm" value="-N"/> <param name="periodic" value="false"/> <param name="dynamic_shift" value="false"/> <output name="output_proj" file="proj.dat"/> <output name="output_cov" file="cov.dat"/> <output name="output_vec" file="vec.dat"/> <output name="output_stats" file="stats.dat"/> <output name="output_val" file="val.dat"/> </test> <!-- fastpca -f contacts2.dat -p proj2.dat -C cov.dat -V vec.dat -S stats.dat -l val2.dat -N --> <test> <param name="input" value="contacts2.dat"/> <param name="cov" value="cov.dat"/> <param name="stats" value="stats.dat"/> <param name="norm" value="-N"/> <param name="periodic" value="false"/> <param name="dynamic_shift" value="false"/> <output name="output_proj" file="proj2.dat"/> <output name="output_val" file="val2.dat"/> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** Dimensionality reduction of molecular dynamics trajectories. Data can be input as tabular or GROMACS XTC files. In addition, data can be projected into a previously computed coordinate space by providing precomputed eigenvectors, statistics and a correlation/covariance matrix. Data can be normalized using the either the covariance or correlation matrix. Data can also be calculated on a torus, which is useful for periodic data, such as protein dihedral angles. _____ .. class:: infomark **Input** - Tabular or XTC file - If you want to project data into a previously calculated principal space, you can upload precomputed eigenvectors, statistics and correlation/covariance matrix. _____ .. class:: infomark **Output** - Projected data (tabular file) with each column representing a principal component - Eigenvectors, statistics and covariance/correlation matrix ]]></help> <citations> <citation type="doi">10.1063/1.4998259</citation> </citations> </tool>