Mercurial > repos > chemteam > fastpca
diff fastpca.xml @ 0:7dbe8bd02431 draft default tip
"planemo upload for repository https://github.com/galaxycomputationalchemistry/galaxy-tools-compchem/ commit ee29bbfa4e78dca11e2e06d0d35a434c063ab588"
author | chemteam |
---|---|
date | Thu, 30 Jan 2020 12:58:19 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fastpca.xml Thu Jan 30 12:58:19 2020 +0000 @@ -0,0 +1,127 @@ +<tool id="fastpca" name="fastpca" version="@VERSION@"> + <description>- dimensionality reduction of MD simulations</description> + <macros> + <token name="@VERSION@">0.9.1</token> + </macros> + <requirements> + <requirement type="package" version="@VERSION@">fastpca</requirement> + </requirements> + <command detect_errors="exit_code"><![CDATA[ + fastpca + -f '$input' + -p '$output_proj' + #if str($inputs.cov) == 'None': + -c '$output_cov' + #elif str($inputs.vec) == 'None': + -C '$inputs.cov' + #end if + #if str($inputs.vec) == 'None': + -v $output_vec + #else: + -V '$inputs.vec' + #end if + #if str($inputs.stats) == 'None': + -s '$output_stats' + #else: + -S '$inputs.stats' + #end if + -l '$output_val' + $norm + $periodic + $dynamic_shift + --verbose + + ]]></command> + <inputs> + <param format="tabular,xtc" name="input" type="data" label="Input data" help="Either a whitespace-separated tabular file or GROMACS XTC file."/> + <section name="inputs" title="Inputs" expanded="true" help="Use these (optional) inputs to project new data onto a previously computed principal space. If not set, the PCA will be computed from scratch and will not be comparable to previous runs." > + <param format="tabular" name="cov" type="data" label="Precomputed covariance/correlation matrix" optional="true"/> + <param format="tabular" name="vec" type="data" label="Precomputed eigenvectors" optional="true"/> + <param format="tabular" name="stats" type="data" label="Precomputed statistics (mean values, sigmas and boundary shifts)" optional="true"/> + </section> + + <param name="norm" type="select" label="How to normalize input:" help="Generally, normalization using the covariance matrix is appropriate when the variable scales are similar, and the correlation matrix is used when variables are on different scales." > + <option value="">Covariance</option> + <option value="-N">Correlation</option> + </param> + <param name="periodic" type="boolean" label="Compute covariance and PCA on a torus?" truevalue="-P" falsevalue="" value="false" help="Useful for computing PCA on periodic data - for example, dihedral angles."/> + <param name="dynamic_shift" type="boolean" label="Use dynamic shifting for periodic projection correction" truevalue="-D" falsevalue="" value="false" help="Default is fale, i.e. simply shift to region of lowest density"/> + </inputs> + <outputs> + <data name="output_proj" format="tabular"/> + <data name="output_cov" format="tabular"> + <filter>inputs["cov"] == None</filter> + </data> + <data name="output_vec" format="tabular"> + <filter>inputs["vec"] == None</filter> + </data> + <data name="output_stats" format="tabular"> + <filter>inputs["stats"] == None</filter> + </data> + <data name="output_val" format="tabular"/> + </outputs> + <tests> + <!-- fastpca -f contacts.dat -p proj.dat -c cov.dat -v vec.dat -s stats.dat -l val.dat -N --> + <test> + <param name="input" value="contacts.dat"/> + <param name="norm" value="-N"/> + <param name="periodic" value="false"/> + <param name="dynamic_shift" value="false"/> + <output name="output_proj" file="proj.dat"/> + <output name="output_cov" file="cov.dat"/> + <output name="output_vec" file="vec.dat"/> + <output name="output_stats" file="stats.dat"/> + <output name="output_val" file="val.dat"/> + </test> + <!-- fastpca -f contacts2.dat -p proj2.dat -C cov.dat -V vec.dat -S stats.dat -l val2.dat -N --> + <test> + <param name="input" value="contacts2.dat"/> + <param name="cov" value="cov.dat"/> + <param name="stats" value="stats.dat"/> + <param name="norm" value="-N"/> + <param name="periodic" value="false"/> + <param name="dynamic_shift" value="false"/> + <output name="output_proj" file="proj2.dat"/> + <output name="output_val" file="val2.dat"/> + </test> + </tests> + <help><![CDATA[ +.. class:: infomark + +**What it does** + +Dimensionality reduction of molecular dynamics trajectories. Data can be input as +tabular or GROMACS XTC files. In addition, data can be projected into a previously +computed coordinate space by providing precomputed eigenvectors, statistics and +a correlation/covariance matrix. + +Data can be normalized using the either the covariance or correlation matrix. Data +can also be calculated on a torus, which is useful for periodic data, such as protein +dihedral angles. + +_____ + + +.. class:: infomark + +**Input** + + - Tabular or XTC file + - If you want to project data into a previously calculated principal space, you can upload precomputed eigenvectors, statistics and correlation/covariance matrix. + +_____ + + +.. class:: infomark + +**Output** + + - Projected data (tabular file) with each column representing a principal component + - Eigenvectors, statistics and covariance/correlation matrix + + ]]></help> + <citations> + <citation type="doi">10.1063/1.4998259</citation> + </citations> +</tool> +