Mercurial > repos > chemteam > fastpca
comparison fastpca.xml @ 0:7dbe8bd02431 draft default tip
"planemo upload for repository https://github.com/galaxycomputationalchemistry/galaxy-tools-compchem/ commit ee29bbfa4e78dca11e2e06d0d35a434c063ab588"
author | chemteam |
---|---|
date | Thu, 30 Jan 2020 12:58:19 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7dbe8bd02431 |
---|---|
1 <tool id="fastpca" name="fastpca" version="@VERSION@"> | |
2 <description>- dimensionality reduction of MD simulations</description> | |
3 <macros> | |
4 <token name="@VERSION@">0.9.1</token> | |
5 </macros> | |
6 <requirements> | |
7 <requirement type="package" version="@VERSION@">fastpca</requirement> | |
8 </requirements> | |
9 <command detect_errors="exit_code"><![CDATA[ | |
10 fastpca | |
11 -f '$input' | |
12 -p '$output_proj' | |
13 #if str($inputs.cov) == 'None': | |
14 -c '$output_cov' | |
15 #elif str($inputs.vec) == 'None': | |
16 -C '$inputs.cov' | |
17 #end if | |
18 #if str($inputs.vec) == 'None': | |
19 -v $output_vec | |
20 #else: | |
21 -V '$inputs.vec' | |
22 #end if | |
23 #if str($inputs.stats) == 'None': | |
24 -s '$output_stats' | |
25 #else: | |
26 -S '$inputs.stats' | |
27 #end if | |
28 -l '$output_val' | |
29 $norm | |
30 $periodic | |
31 $dynamic_shift | |
32 --verbose | |
33 | |
34 ]]></command> | |
35 <inputs> | |
36 <param format="tabular,xtc" name="input" type="data" label="Input data" help="Either a whitespace-separated tabular file or GROMACS XTC file."/> | |
37 <section name="inputs" title="Inputs" expanded="true" help="Use these (optional) inputs to project new data onto a previously computed principal space. If not set, the PCA will be computed from scratch and will not be comparable to previous runs." > | |
38 <param format="tabular" name="cov" type="data" label="Precomputed covariance/correlation matrix" optional="true"/> | |
39 <param format="tabular" name="vec" type="data" label="Precomputed eigenvectors" optional="true"/> | |
40 <param format="tabular" name="stats" type="data" label="Precomputed statistics (mean values, sigmas and boundary shifts)" optional="true"/> | |
41 </section> | |
42 | |
43 <param name="norm" type="select" label="How to normalize input:" help="Generally, normalization using the covariance matrix is appropriate when the variable scales are similar, and the correlation matrix is used when variables are on different scales." > | |
44 <option value="">Covariance</option> | |
45 <option value="-N">Correlation</option> | |
46 </param> | |
47 <param name="periodic" type="boolean" label="Compute covariance and PCA on a torus?" truevalue="-P" falsevalue="" value="false" help="Useful for computing PCA on periodic data - for example, dihedral angles."/> | |
48 <param name="dynamic_shift" type="boolean" label="Use dynamic shifting for periodic projection correction" truevalue="-D" falsevalue="" value="false" help="Default is fale, i.e. simply shift to region of lowest density"/> | |
49 </inputs> | |
50 <outputs> | |
51 <data name="output_proj" format="tabular"/> | |
52 <data name="output_cov" format="tabular"> | |
53 <filter>inputs["cov"] == None</filter> | |
54 </data> | |
55 <data name="output_vec" format="tabular"> | |
56 <filter>inputs["vec"] == None</filter> | |
57 </data> | |
58 <data name="output_stats" format="tabular"> | |
59 <filter>inputs["stats"] == None</filter> | |
60 </data> | |
61 <data name="output_val" format="tabular"/> | |
62 </outputs> | |
63 <tests> | |
64 <!-- fastpca -f contacts.dat -p proj.dat -c cov.dat -v vec.dat -s stats.dat -l val.dat -N --> | |
65 <test> | |
66 <param name="input" value="contacts.dat"/> | |
67 <param name="norm" value="-N"/> | |
68 <param name="periodic" value="false"/> | |
69 <param name="dynamic_shift" value="false"/> | |
70 <output name="output_proj" file="proj.dat"/> | |
71 <output name="output_cov" file="cov.dat"/> | |
72 <output name="output_vec" file="vec.dat"/> | |
73 <output name="output_stats" file="stats.dat"/> | |
74 <output name="output_val" file="val.dat"/> | |
75 </test> | |
76 <!-- fastpca -f contacts2.dat -p proj2.dat -C cov.dat -V vec.dat -S stats.dat -l val2.dat -N --> | |
77 <test> | |
78 <param name="input" value="contacts2.dat"/> | |
79 <param name="cov" value="cov.dat"/> | |
80 <param name="stats" value="stats.dat"/> | |
81 <param name="norm" value="-N"/> | |
82 <param name="periodic" value="false"/> | |
83 <param name="dynamic_shift" value="false"/> | |
84 <output name="output_proj" file="proj2.dat"/> | |
85 <output name="output_val" file="val2.dat"/> | |
86 </test> | |
87 </tests> | |
88 <help><![CDATA[ | |
89 .. class:: infomark | |
90 | |
91 **What it does** | |
92 | |
93 Dimensionality reduction of molecular dynamics trajectories. Data can be input as | |
94 tabular or GROMACS XTC files. In addition, data can be projected into a previously | |
95 computed coordinate space by providing precomputed eigenvectors, statistics and | |
96 a correlation/covariance matrix. | |
97 | |
98 Data can be normalized using the either the covariance or correlation matrix. Data | |
99 can also be calculated on a torus, which is useful for periodic data, such as protein | |
100 dihedral angles. | |
101 | |
102 _____ | |
103 | |
104 | |
105 .. class:: infomark | |
106 | |
107 **Input** | |
108 | |
109 - Tabular or XTC file | |
110 - If you want to project data into a previously calculated principal space, you can upload precomputed eigenvectors, statistics and correlation/covariance matrix. | |
111 | |
112 _____ | |
113 | |
114 | |
115 .. class:: infomark | |
116 | |
117 **Output** | |
118 | |
119 - Projected data (tabular file) with each column representing a principal component | |
120 - Eigenvectors, statistics and covariance/correlation matrix | |
121 | |
122 ]]></help> | |
123 <citations> | |
124 <citation type="doi">10.1063/1.4998259</citation> | |
125 </citations> | |
126 </tool> | |
127 |