changeset 12:9fe4a861601b draft

planemo upload commit 7e2bd28d27e13c402acd46500f64d5c117797aa7-dirty
author proteore
date Fri, 09 Nov 2018 05:11:46 -0500
parents 6d5c0ff2b0bd
children c59ec7fce7b3
files PathView.R Pathview.xml README.rst hsa_pathways.loc.sample kegg_pathways.loc.sample kegg_pathways_list_index.loc.sample kegg_pathways_visualization.R kegg_pathways_visualization.xml mmu_pathways.loc.sample tool-data/rno_pathways.loc tool_data_table_conf.xml.sample
diffstat 11 files changed, 960 insertions(+), 1147 deletions(-) [+]
line wrap: on
line diff
--- a/PathView.R	Fri Sep 14 09:52:28 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,231 +0,0 @@
-#!/usr/bin/Rscript
-#Rscript made for mapping genesID on KEGG pathway with Pathview package
-#input : csv file containing ids (uniprot or geneID) to map, plus parameters
-#output : KEGG pathway : jpeg or pdf file.
-
-suppressMessages(library("pathview"))
-
-read_file <- function(path,header){
-    file <- try(read.table(path,header=header, sep="\t",stringsAsFactors = FALSE, quote=""),silent=TRUE)
-    if (inherits(file,"try-error")){
-      stop("File not found !")
-    }else{
-      return(file)
-    }
-}
-
-##### fuction to clean and concatenate pathway name (allow more flexibility for user input) 
-concat_string <- function(x){
-  x <- gsub(" - .*","",x)
-  x <- gsub(" ","",x)
-  x <- gsub("-","",x)
-  x <- gsub("_","",x)
-  x <- gsub(",","",x)
-  x <- gsub("\\'","",x)
-  x <- gsub("\\(.*)","",x)
-  x <- gsub("\\/","",x)
-  x <- tolower(x)
-  return(x)
-}
-
-
-get_args <- function(){
-  
-  ## Collect arguments
-  args <- commandArgs(TRUE)
-  
-  ## Default setting when no arguments passed
-  if(length(args) < 1) {
-    args <- c("--help")
-  }
-  
-  ## Help section
-  if("--help" %in% args) {
-    cat("Pathview R script
-    Arguments:
-      --help                  Print this test
-      --input                 path of the input  file (must contains a colum of uniprot and/or geneID accession number)
-      --id_list               list of ids to use, ',' separated
-      --pathways_id            Id(s) of pathway(s) to use, if several, semicolon separated list : hsa00010;hsa05412 
-      --id_type               Type of accession number ('uniprotID' or 'geneID')
-      --id_column             Column containing accesion number of interest (ex : 'c1')
-      --header                Boolean, TRUE if header FALSE if not
-      --ouput                 Output filename
-      --expression_values1    Column containing expression values (first condition)
-      --expression_values2    Column containing expression values (second condition)
-      --expression_values3    Column containing expression values (third condition)
-      --native_kegg           TRUE : native KEGG graph, FALSE : Graphviz graph
-      --species               KEGG species (hsa, mmu, ...)
-      --pathways_input        Tab with pathways in a column, output format of find_pathways
-      --pathway_col           Column of pathways to use
-      --header2               Boolean, TRUE if header FALSE if not
-
-      Example:
-      ./PathView.R --input 'input.csv' --pathway_id '05412' --id_type 'uniprotID' --id_column 'c1' --header TRUE \n\n")
-    
-    q(save="no")
-  }
-  
-  parseArgs <- function(x) strsplit(sub("^--", "", x), "=")
-  argsDF <- as.data.frame(do.call("rbind", parseArgs(args)))
-  args <- as.list(as.character(argsDF$V2))
-  names(args) <- argsDF$V1
-  
-  return(args)
-}
-
-str2bool <- function(x){
-  if (any(is.element(c("t","true"),tolower(x)))){
-    return (TRUE)
-  }else if (any(is.element(c("f","false"),tolower(x)))){
-    return (FALSE)
-  }else{
-    return(NULL)
-  }
-}
-
-is.letter <- function(x) grepl("[[:alpha:]]", x)
-
-#### hsa00010 -> 00010
-remove_kegg_prefix <- function(x){
-  x = gsub(":","",x)
-  if (substr(x,1,4) == 'path'){
-    x=substr(x,5,nchar(x))
-  }
-  if (is.letter(substr(x,1,3))){
-    x <- substr(x,4,nchar(x))
-  }
-  return(x)
-}
-
-clean_bad_character <- function(string)  {
-  string <- gsub("X","",string)
-  string <- gsub(" ","",string)
-  return(string)
-}
-
-args <- get_args()
-
-###setting variables
-if (!is.null(args$pathways_id)) { 
-  ids <- sapply(rapply(strsplit(clean_bad_character(args$pathways_id),","),c), function(x) remove_kegg_prefix(x),USE.NAMES = FALSE)
-}else if (!is.null(args$pathways_input)){
-  header2 <- str2bool(args$header2)
-  pathway_col <- as.numeric(gsub("c", "" ,args$pathway_col))
-  pathways_file = read_file(args$pathways_input,header2)
-  ids <- sapply(rapply(strsplit(clean_bad_character(pathways_file[,pathway_col]),","),c), function(x) remove_kegg_prefix(x),USE.NAMES = FALSE)
-}
-#if (!is.null(args$pathways_name)) {names <- as.vector(sapply(strsplit(args$pathways_name,","), function(x) concat_string(x),USE.NAMES = FALSE))}
-if (!is.null(args$id_list)) {id_list <- as.vector(strsplit(clean_bad_character(args$id_list),","))}
-id_type <- tolower(args$id_type)
-ncol <- as.numeric(gsub("c", "" ,args$id_column))
-header <- str2bool(args$header)
-#output <- args$output
-native_kegg <- str2bool(args$native_kegg)
-species=args$species
-#org list used in mapped2geneID
-org <- c('Hs','Mm')
-names(org) <- c('hsa','mmu')
-
-
-
-#read input file or list
-if (!is.null(args$input)){
-  tab <- read_file(args$input,header)
-  tab <- data.frame(tab[which(tab[ncol]!=""),])
-} else {
-  tab <- data.frame(id_list)
-  ncol=1
-}
-
-e1 <- as.numeric(gsub("c", "" ,args$expression_values1))
-if (!is.null(args$expression_values1)) { colnames(tab)[e1] <- "e1" }
-e2 <- as.numeric(gsub("c", "" ,args$expression_values2))
-if (!is.null(args$expression_values2)) { colnames(tab)[e2] <- "e2" }
-e3 <- as.numeric(gsub("c", "" ,args$expression_values3))
-if (!is.null(args$expression_values3)) { colnames(tab)[e3] <- "e3" }
-
-
-##### map uniprotID to entrez geneID
-if (id_type == "uniprotid") {
-  
-  uniprotID = tab[,ncol]
-  mapped2geneID = id2eg(ids = uniprotID, category = "uniprot", org = org[[species]], pkg.name = NULL)
-  geneID = mapped2geneID[,2]
-  tab = cbind(tab,geneID)
-
-}else if (id_type == "geneid"){
-
-  colnames(tab)[ncol] <- "geneID"
-
-}
-
-geneID = tab$geneID[which(tab$geneID !="NA")]
-geneID = gsub(" ","",geneID)
-geneID = unlist(strsplit(geneID,"[;]"))
-
-
-#### get hsa pathways list 
-#download.file(url = "http://rest.kegg.jp/link/pathway/hsa", destfile = "/home/dchristiany/proteore_project/ProteoRE/tools/pathview/geneID_to_hsa_pathways.csv") 
-#geneid_hsa_pathways <- read_file(path = "/home/dchristiany/proteore_project/ProteoRE/tools/pathview/geneID_to_hsa_pathways.csv",FALSE)
-#names(geneid_hsa_pathways) <- c("geneID","pathway")
-
-##### build matrix to map on KEGG pathway (kgml : KEGG xml)
-if (!is.null(args$expression_values1)&is.null(args$expression_values2)&is.null(args$expression_values3)){
-  mat <- as.data.frame(cbind(tab$e1)[which(!is.na(tab$geneID)),])
-  row.names(mat) <- tab$geneID[which(!is.na(tab$geneID))]
-} else if (!is.null(args$expression_values1)&!is.null(args$expression_values2)&is.null(args$expression_values3)){
-  mat <- as.data.frame(cbind(tab$e1,tab$e2)[which(!is.na(tab$geneID)),])
-  row.names(mat) <- tab$geneID[which(!is.na(tab$geneID))]
-}else if (!is.null(args$expression_values1)&!is.null(args$expression_values2)&!is.null(args$expression_values3)){
-  mat <- as.data.frame(cbind(tab$e1,tab$e2,tab$e3)[which(!is.na(tab$geneID)),])
-  row.names(mat) <- tab$geneID[which(!is.na(tab$geneID))]
-} else {
-  mat <- geneID
-}
-
-
-#### simulation data test
-#exp1 <- sim.mol.data(mol.type = c("gene", "gene.ko", "cpd")[1], id.type = NULL, species="hsa", discrete = FALSE, nmol = 161, nexp = 1, rand.seed=100)
-#exp2 <- sim.mol.data(mol.type = c("gene", "gene.ko", "cpd")[1], id.type = NULL, species="hsa", discrete = FALSE, nmol = 161, nexp = 1, rand.seed=50)
-#exp3 <- sim.mol.data(mol.type = c("gene", "gene.ko", "cpd")[1], id.type = NULL, species="hsa", discrete = FALSE, nmol = 161, nexp = 1, rand.seed=10)
-#tab <- cbind(tab,exp1,exp2,exp3)
-
-#write.table(tab, file='/home/dchristiany/proteore_project/ProteoRE/tools/pathview/Lacombe_sim_expression_data.tsv', quote=FALSE, sep='\t',row.names = FALSE)
-
-#mat <- exp1[1:nrow(tab)]
-#names(mat) <- geneID
-
-
-#####mapping geneID (with or without expression values) on KEGG pathway
-plot.col.key= TRUE
-low_color = "green"
-mid_color = "#F3F781" #yellow
-high_color = "red"
-if (is.null(tab$e1)) {
-  plot.col.key= FALSE   #if there's no exrepession data, we don't show the color key
-  high_color = "#81BEF7" #blue
-}
-
-for (id in ids) {
-  pathview(gene.data = mat,
-           pathway.id = id,
-           species = species, 
-           kegg.dir = ".", 
-           gene.idtype = "entrez", 
-           kegg.native = native_kegg,
-           low = list(gene = low_color, cpd = "blue"), 
-           mid = list(gene = mid_color, cpd = "transparent"), 
-           high = list(gene = high_color, cpd = "yellow"), 
-           na.col="#D8D8D8", #gray
-           cpd.data=NULL,
-           plot.col.key = plot.col.key,
-           pdf.size=c(9,9))
-}
-
-########using keggview.native
-
-#xml.file=system.file("extdata", "hsa00010.xml", package = "pathview")
-#node.data=node.info("/home/dchristiany/hsa00010.xml")
-#plot.data.gene=node.map(mol.data=test, node.data, node.types="gene")
-#colors =node.color(plot.data = plot.data.gene[,1:9])
\ No newline at end of file
--- a/Pathview.xml	Fri Sep 14 09:52:28 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,250 +0,0 @@
-<tool id="Pathview" name="KEGG pathway mapping (pathview)" version="2018.09.14">
-    <requirements>
-        <requirement type="package" version="1.18.0">bioconductor-pathview</requirement>
-    </requirements>
-    <command detect_errors="exit_code"><![CDATA[
-        Rscript $__tool_directory__/PathView.R 
-        #if $input.ids == "text"
-            --id_list="$input.txt"
-        #else
-            --input="$input.file"
-            --id_column="$input.ncol"
-            --header="$input.header"  
-        #end if
-        #if $species.pathways.pathways_id != "pathways_file"
-            --pathways_id="$species.pathways.pids" 
-        #else 
-            --pathways_input="$species.pathways.file"
-            --header2="$species.pathways.header2"
-            --pathway_col="$species.pathways.ncol2"
-        #end if
-        --id_type="$id_type"  
-        --native_kegg="$native"
-        
-        #if $input.ids=="file"
-            #if $input.expression_values.nb_exp =="1"
-                --expression_values1="$input.expression_values.e1"
-            #else if $input.expression_values.nb_exp =="2"
-                --expression_values1="$input.expression_values.e1"
-                --expression_values2="$input.expression_values.e2"
-            #else if $input.expression_values.nb_exp =="3"
-                --expression_values1="$input.expression_values.e1"
-                --expression_values2="$input.expression_values.e2"
-                --expression_values3="$input.expression_values.e3"
-            #end if
-        #end if
-
-        --species=${species.ref_file}
-
-    ]]></command>
-    <inputs>
-    <conditional name="species">
-        <param name="ref_file" type="select" label="Select species" >
-            <option value="hsa">Human (hsa)</option>
-            <option value="mmu">Mouse (mmu)</option>
-        </param>
-            <when value="hsa">
-                <conditional name="pathways">
-                <param name="pathways_id" type="select" label="Provide your pathway(s)" help="Enter KEGG pathway name(s) or KEGG pathway id(s)">
-                    <option value="pathways_names">KEGG pathway name(s)</option>
-                    <option value="pathways_ids">KEGG pathway id(s)</option>
-                    <option value="pathways_file">KEGG pathway id(s) from file</option>
-                </param>
-                <when value="pathways_names">
-                    <param name="pids" type="select" label="Select pathway(s)" multiple="true" help='You can select one or several pathway(s), you can write the beginning of your pathways to search using autocomplete'>
-                        <options from_data_table="hsa_pathways">
-                            <filter type="sort_by" column="1"/>
-                            <validator type="no_options" message="No indexes are available for the selected input dataset"/>
-                        </options>
-                    </param>
-                </when>
-                <when value="pathways_ids">
-                    <param name="pids" type="text" label="Copy/paste your pathway id(s)" help='IDs must be separated by "," into the form field, for example: "00010,05412" or "hsa00010,hsa05412" or "path:hsa00010"'>
-                        <sanitizer invalid_char=''>
-                        <valid initial="string.printable">
-                            <remove value="&apos;"/>
-                        </valid>
-                        <mapping>
-                            <add source="&#x20;" target=""/> 
-                        </mapping>
-                        </sanitizer>
-                    </param>
-                </when>
-                <when value="pathways_file">
-                    <param name="file" type="data" format="txt,tabular" label="Select a file with a column of pathways id" help="Pathway id format : 'path:hsa00010' or 'hsa00010' or '00010'" />
-                    <param name="header2" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contains a header?" />
-                    <param name="ncol2" type="text" value="c1" label="The column which contains your pathways ids" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
-                </when>
-                </conditional>
-            </when>
-            <when value="mmu">
-                <conditional name="pathways">
-                <param name="pathways_id" type="select" label="Provide your pathway(s)" help="Enter KEGG pathway name(s) or KEGG pathway id(s)">
-                    <option value="pathways_names">KEGG pathway name(s)</option>
-                    <option value="pathways_ids">KEGG pathway id(s)</option>
-                    <option value="pathways_file">KEGG pathway id(s) from file</option>
-                </param>
-                <when value="pathways_names">
-                    <param name="pids" type="select" label="Select pathway(s)" multiple="true" help='You can select one or several pathway(s), you can write the beginning of your pathways to search using autocomplete'>
-                        <options from_data_table="mmu_pathways">
-                            <filter type="sort_by" column="1"/>
-                            <validator type="no_options" message="No indexes are available for the selected input dataset"/>
-                        </options>
-                    </param>
-                </when>
-                <when value="pathways_ids">
-                    <param name="pids" type="text" label="Copy/paste your pathway id(s)" help='IDs must be separated by "," into the form field, for example: "path:mmu00053" or "mmu00053,mmu00340" or "00053"'>
-                        <sanitizer invalid_char=''>
-                        <valid initial="string.printable">
-                            <remove value="&apos;"/>
-                        </valid>
-                        <mapping>
-                            <add source="&#x20;" target=""/> 
-                        </mapping>
-                        </sanitizer>
-                    </param>
-                </when>
-                <when value="pathways_file">
-                    <param name="file" type="data" format="txt,tabular" label="Select a file with a column of pathways id " help="Pathway id format : 'path:mmu00053' or 'mmu00053' or '00053'" />
-                    <param name="header2" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contain header?" />
-                    <param name="ncol2" type="text" value="c1" label="The column which contains your pathways ids" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
-                </when>
-                </conditional>
-            </when>
-        </conditional>
-        <param name="id_type" type="select" label="Select your identifiers type :">
-            <option value="uniprotID">Uniprot Accession number</option>
-            <option value="geneID">Entrez gene ID</option>
-        </param>
-        <conditional name="input" >
-            <param name="ids" type="select" label="Provide your identifiers" help="Copy/paste or ID list from a file (e.g. table)" >
-                <option value="text">Copy/paste your identifiers</option>
-                <option value="file" selected="true">Input file containing your identifiers</option>
-            </param>
-            <when value="text" >
-                <param name="txt" type="text" label="Copy/paste your identifiers" help='IDs must be separated by "," into the form field, for example: P31946,P62258' >
-                    <sanitizer invalid_char=''>
-                        <valid initial="string.printable">
-                            <remove value="&apos;"/>
-                        </valid>
-                        <mapping initial="none">
-                            <add source="&apos;" target="__sq__"/>
-                        </mapping>
-                    </sanitizer>
-                </param>
-            </when>
-            <when value="file" >
-                <param name="file" type="data" format="txt,tabular" label="Select a file that contains your list of IDs" help="" />
-                <param name="header" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contains a header?" />
-                <param name="ncol" type="text" value="c1" label="The column which contains your IDs to map" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
-                <conditional name="expression_values">
-                    <param name="nb_exp" type="select" label="How many expression values column in your file ?">
-                        <option value="0" >0</option>
-                        <option value="1" >1</option>
-                        <option value="2" >2</option>
-                        <option value="3" >3</option>
-                    </param>
-                    <when value="0">
-                    </when>
-                    <when value="1">
-                        <param name="e1" type="text" value="" label="First column number of your expression data" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on'/>
-                    </when>
-                    <when value="2">
-                        <param name="e1" type="text" value="" label="First column number of your expression data"/>
-                        <param name="e2" type="text" value="" label="Second column number of your expression data"/>
-                    </when>
-                    <when value="3">
-                        <param name="e1" type="text" value="" label="First column number of your expression data"/>
-                        <param name="e2" type="text" value="" label="Second column number of your expression data"/>
-                        <param name="e3" type="text" value="" label="Third column number of your expression data"/>
-                    </when>
-                </conditional>
-            </when>
-        </conditional>
-        <param name="native" type="select" label="Choose the output graph format">
-            <option value="true">KEGG graph (.png)</option>
-            <option value="false">Graphviz layout engine (.pdf)</option> 
-        </param>
-    </inputs>
-    <outputs>
-        <data name="graphviz_from_file" format="pdf" label="KEGG mapping with ${input.file.name}">
-            <filter>native=="false" and input["ids"] == "file"</filter>
-            <discover_datasets pattern="(?P&lt;designation&gt;.+)\.pathview.*\.pdf" ext="pdf" visible="true" assign_primary_output="true"/>
-        </data>
-        <data name="kegg_from_file" format="png" label="KEGG mapping with ${input.file.name}">
-            <filter>native=="true" and input["ids"] == "file"</filter>
-            <discover_datasets pattern="(?P&lt;designation&gt;.+)\.pathview.*\.png" ext="png" visible="true" assign_primary_output="true"/>
-        </data>
-        <data name="graphviz_from_list" format="pdf" label="KEGG mapping with given ids">
-            <filter>native=="false" and input["ids"] == "text"</filter>
-            <discover_datasets pattern="(?P&lt;designation&gt;.+)\.pathview.*\.pdf" ext="pdf" visible="true" assign_primary_output="true"/>
-        </data>
-        <data name="kegg_from_list" format="png" label="KEGG mapping with given ids">
-            <filter>native=="true" and input["ids"] == "text"</filter>
-            <discover_datasets pattern="(?P&lt;designation&gt;.+)\.pathview.*\.png" ext="png" visible="true" assign_primary_output="true"/>
-        </data>
-    </outputs>
-    <tests>
-        <test>
-            <conditional name="input">
-                <param name="ids" value="file"/>
-                <param name="file" value="Lacombe_et_al_2017_OK.txt"/>
-                <param name="header" value="true"/>
-                <param name="ncol" value="c1"/>
-            </conditional>
-            <conditional name="pathways">
-                <param name="pathways_id" value="pathways_ids"/>
-                <param name="pids" value="04514,05167,00010"/>
-            </conditional>
-            <param name="id_type" value="uniprotID"/>
-            <param name="species" value="hsa"/>
-            <param name="native" value="true"/>            
-            <output name="kegg_from_file" file="hsa04514.pathview.png" compare="sim_size"/>
-            <output name="kegg_from_file" file="hsa05167.pathview.png" compare="sim_size"/>
-            <output name="kegg_from_file" file="hsa00010.pathview.png" compare="sim_size"/>
-        </test>
-    </tests>
-    <help><![CDATA[
-This tool map a list of Uniprot Accession number or Entrez gene ID to KEGG pathway with pathview R package.
-
-Select your identifier type : UniprotAC or Entrez gene ID
-
-Select an input file containing ids in a column, set header and column number or copy/paste your ids. 
-
-You can import 1 to 3 column(s) of expression values if you are importing ids from a file.
-
-Select a species of interest. 
-
-Select one or several pathways of interest from the dropdown menu or copy/paste KEGG pathway id(s) or import it from a file.
-
-Select the graph format : KEGG (jpg) or graphviz (pdf)
-
-Uniprot accession number converted to Entrez geneID or Entrez geneID are mapped to each selected pathways.
-
-Output : One file (png or pdf) for each selected pathway. 
-
------
-
-.. class:: infomark
-
-**Authors**
-
-David Christiany, Florence Combes, Yves Vandenbrouck CEA, INSERM, CNRS, Grenoble-Alpes University, BIG Institute, FR
-
-Sandra Dérozier, Olivier Rué, Christophe Caron, Valentin Loux INRA, Paris-Saclay University, MAIAGE Unit, Migale Bioinformatics platform
-
-This work has been partially funded through the French National Agency for Research (ANR) IFB project.
-
-Contact support@proteore.org for any questions or concerns about the Galaxy implementation of this tool.
-    ]]></help>
-    <citations>
-        <citation type="doi">10.1093/nar/gkx372</citation>
-        <citation type="bibtex">
-@misc{renameTODO,
-  author = {Weijun Luo},
-  year = {2013},
-  title = {pathview},
-  url = {https://bioconductor.org/packages/release/bioc/html/pathview.html},
-}</citation>
-    </citations>
-</tool>
--- a/README.rst	Fri Sep 14 09:52:28 2018 -0400
+++ b/README.rst	Fri Nov 09 05:11:46 2018 -0500
@@ -15,18 +15,52 @@
 
 This tool map a list of Uniprot Accession number or Entrez gene ID to KEGG pathway with pathview R package.
 
-Select your identifier type : UniprotAC or Entrez gene ID
+You can map Entrez gene IDs / Uniprot accession number from three species : human, mouse and rat.
 
-Select an input file containing ids in a column, set header and column number or copy/paste your ids. 
+If your input have another type of IDs, please use the ID_Converter tool.
+
+**Input:**
+
 
-You can import 1 to 3 column(s) of expression values if you are importing ids from a file.
+- KEGG Pathways IDs to be used for mapping can be set by:
+    - chosing from the KEGG pathways name list 
+    - giving a list (copy/paste)
+    - importing a list from a dataset (column) - output of KEGG pathways identification and coverage can be used (1st column)
+- Genes/proteins ids to map can be either a list of Entrez genes IDs / Uniprot accession number or a file (tabular, tsv, txt) containing at least one column of Entrez genes IDs / Uniprot accession number. 
+- fold change values (up to three columns) from a dataset (same dataset as for Genes/proteins ids to map)
 
-Select a species of interest. 
+You can see below an example of an input file with identifiers (uniprot_AC) and fold_change values.
+
+.. csv-table:: Simulated data
+   :header: "Uniprot_AC","Protein.name","Number_of_peptides","fc_values 1","fc_values 2","fc_values 3"
+
+   "P15924","Desmoplakin","69","0.172302292051025","-0.757435966487116","0.0411240398990759"
+   "P02538","Keratin, type II cytoskeletal 6A","53","-0.988842456122076","0.654626325100182","-0.219153396366064"
+   "P02768","Serum albumin","44","-0.983493243315454","0.113752002761474","-0.645886132600729"
+   "P08779","Keratin, type I cytoskeletal 16","29","0.552302597284443","-0.329045605110646","2.10616106806788"
 
-Select one or several pathways of interest from the dropdown menu or copy/paste KEGG pathway id(s) or import it from a file.
+|
 
-Select the graph format : KEGG (jpg) or graphviz (pdf)
+**Output:**
 
-Uniprot accession number converted to Entrez geneID or Entrez geneID are mapped to each selected pathways.
+- a **collection dataset** named 'KEGG pathways map from <dataset>', one file (png or pdf) for each given pathway.
+- a **summary text file** (.tsv) of the mapping(s) with the following columns
+    - **KEGG pathway ID**: KEGG pathway(s) used to map given genes/proteins ids
+    - **pathway name**: name(s) of KEGG pathway(s) used for mapping
+    - **nb of Uniprot_AC used** (only when Uniprot accession number is given): number of Uniprot accession number which will be converted to Entrez genes IDs
+    - **nb of Entrez gene ID used**: number of Entrez gene IDs used for mapping
+    - **nb of Entrez gene ID mapped**: number of Entrez gene IDs mapped on a given pathway
+    - **nb of Entrez gene ID in the pathway**: number total of Entrez gene IDs in a given pathway
+    - **ratio of Entrez gene ID mapped**: number of Entrez gene IDs mapped / number total of Entrez gene IDs
+    - **Entrez gene ID mapped**: list of mapped Entrez gene IDs
+    - **uniprot_AC mapped** (only when Uniprot accession number is given): list of Uniprot accession number corresponding to the mapped Entrez gene IDs
 
-Output : One file (png or pdf) for each selected pathway. 
\ No newline at end of file
+-----
+
+.. class:: infomark
+
+**Database:**
+
+KEGG Pathways names list are from  http://rest.kegg.jp/list/pathway/
+
+User manual / Documentation: http://www.bioconductor.org/packages/release/bioc/html/pathview.html
--- a/hsa_pathways.loc.sample	Fri Sep 14 09:52:28 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,330 +0,0 @@
-#value	name
-hsa00010	Glycolysis / Gluconeogenesis
-hsa00020	Citrate cycle (TCA cycle)
-hsa00030	Pentose phosphate pathway
-hsa00040	Pentose and glucuronate interconversions
-hsa00051	Fructose and mannose metabolism
-hsa00052	Galactose metabolism
-hsa00053	Ascorbate and aldarate metabolism
-hsa00061	Fatty acid biosynthesis
-hsa00062	Fatty acid elongation
-hsa00071	Fatty acid degradation
-hsa00072	Synthesis and degradation of ketone bodies
-hsa00100	Steroid biosynthesis
-hsa00120	Primary bile acid biosynthesis
-hsa00130	Ubiquinone and other terpenoid-quinone biosynthesis
-hsa00140	Steroid hormone biosynthesis
-hsa00190	Oxidative phosphorylation
-hsa00220	Arginine biosynthesis
-hsa00230	Purine metabolism
-hsa00232	Caffeine metabolism
-hsa00240	Pyrimidine metabolism
-hsa00250	Alanine, aspartate and glutamate metabolism
-hsa00260	Glycine, serine and threonine metabolism
-hsa00270	Cysteine and methionine metabolism
-hsa00280	Valine, leucine and isoleucine degradation
-hsa00290	Valine, leucine and isoleucine biosynthesis
-hsa00310	Lysine degradation
-hsa00330	Arginine and proline metabolism
-hsa00340	Histidine metabolism
-hsa00350	Tyrosine metabolism
-hsa00360	Phenylalanine metabolism
-hsa00380	Tryptophan metabolism
-hsa00400	Phenylalanine, tyrosine and tryptophan biosynthesis
-hsa00410	beta-Alanine metabolism
-hsa00430	Taurine and hypotaurine metabolism
-hsa00440	Phosphonate and phosphinate metabolism
-hsa00450	Selenocompound metabolism
-hsa00471	D-Glutamine and D-glutamate metabolism
-hsa00472	D-Arginine and D-ornithine metabolism
-hsa00480	Glutathione metabolism
-hsa00500	Starch and sucrose metabolism
-hsa00510	N-Glycan biosynthesis
-hsa00511	Other glycan degradation
-hsa00512	Mucin type O-glycan biosynthesis
-hsa00514	Other types of O-glycan biosynthesis
-hsa00515	Mannose type O-glycan biosynthesis
-hsa00520	Amino sugar and nucleotide sugar metabolism
-hsa00524	Neomycin, kanamycin and gentamicin biosynthesis
-hsa00531	Glycosaminoglycan degradation
-hsa00532	Glycosaminoglycan biosynthesis
-hsa00533	Glycosaminoglycan biosynthesis
-hsa00534	Glycosaminoglycan biosynthesis
-hsa00561	Glycerolipid metabolism
-hsa00562	Inositol phosphate metabolism
-hsa00563	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-hsa00564	Glycerophospholipid metabolism
-hsa00565	Ether lipid metabolism
-hsa00590	Arachidonic acid metabolism
-hsa00591	Linoleic acid metabolism
-hsa00592	alpha-Linolenic acid metabolism
-hsa00600	Sphingolipid metabolism
-hsa00601	Glycosphingolipid biosynthesis
-hsa00603	Glycosphingolipid biosynthesis
-hsa00604	Glycosphingolipid biosynthesis
-hsa00620	Pyruvate metabolism
-hsa00630	Glyoxylate and dicarboxylate metabolism
-hsa00640	Propanoate metabolism
-hsa00650	Butanoate metabolism
-hsa00670	One carbon pool by folate
-hsa00730	Thiamine metabolism
-hsa00740	Riboflavin metabolism
-hsa00750	Vitamin B6 metabolism
-hsa00760	Nicotinate and nicotinamide metabolism
-hsa00770	Pantothenate and CoA biosynthesis
-hsa00780	Biotin metabolism
-hsa00785	Lipoic acid metabolism
-hsa00790	Folate biosynthesis
-hsa00830	Retinol metabolism
-hsa00860	Porphyrin and chlorophyll metabolism
-hsa00900	Terpenoid backbone biosynthesis
-hsa00910	Nitrogen metabolism
-hsa00920	Sulfur metabolism
-hsa00970	Aminoacyl-tRNA biosynthesis
-hsa00980	Metabolism of xenobiotics by cytochrome P450
-hsa00982	Drug metabolism
-hsa00983	Drug metabolism
-hsa01040	Biosynthesis of unsaturated fatty acids
-hsa01100	Metabolic pathways
-hsa01200	Carbon metabolism
-hsa01210	2-Oxocarboxylic acid metabolism
-hsa01212	Fatty acid metabolism
-hsa01230	Biosynthesis of amino acids
-hsa01521	EGFR tyrosine kinase inhibitor resistance
-hsa01522	Endocrine resistance
-hsa01523	Antifolate resistance
-hsa01524	Platinum drug resistance
-hsa02010	ABC transporters
-hsa03008	Ribosome biogenesis in eukaryotes
-hsa03010	Ribosome
-hsa03013	RNA transport
-hsa03015	mRNA surveillance pathway
-hsa03018	RNA degradation
-hsa03020	RNA polymerase
-hsa03022	Basal transcription factors
-hsa03030	DNA replication
-hsa03040	Spliceosome
-hsa03050	Proteasome
-hsa03060	Protein export
-hsa03320	PPAR signaling pathway
-hsa03410	Base excision repair
-hsa03420	Nucleotide excision repair
-hsa03430	Mismatch repair
-hsa03440	Homologous recombination
-hsa03450	Non-homologous end-joining
-hsa03460	Fanconi anemia pathway
-hsa04010	MAPK signaling pathway
-hsa04012	ErbB signaling pathway
-hsa04014	Ras signaling pathway
-hsa04015	Rap1 signaling pathway
-hsa04020	Calcium signaling pathway
-hsa04022	cGMP-PKG signaling pathway
-hsa04024	cAMP signaling pathway
-hsa04060	Cytokine-cytokine receptor interaction
-hsa04062	Chemokine signaling pathway
-hsa04064	NF-kappa B signaling pathway
-hsa04066	HIF-1 signaling pathway
-hsa04068	FoxO signaling pathway
-hsa04070	Phosphatidylinositol signaling system
-hsa04071	Sphingolipid signaling pathway
-hsa04072	Phospholipase D signaling pathway
-hsa04080	Neuroactive ligand-receptor interaction
-hsa04110	Cell cycle
-hsa04114	Oocyte meiosis
-hsa04115	p53 signaling pathway
-hsa04120	Ubiquitin mediated proteolysis
-hsa04122	Sulfur relay system
-hsa04130	SNARE interactions in vesicular transport
-hsa04136	Autophagy
-hsa04137	Mitophagy
-hsa04140	Autophagy
-hsa04141	Protein processing in endoplasmic reticulum
-hsa04142	Lysosome
-hsa04144	Endocytosis
-hsa04145	Phagosome
-hsa04146	Peroxisome
-hsa04150	mTOR signaling pathway
-hsa04151	PI3K-Akt signaling pathway
-hsa04152	AMPK signaling pathway
-hsa04210	Apoptosis
-hsa04211	Longevity regulating pathway
-hsa04213	Longevity regulating pathway
-hsa04215	Apoptosis
-hsa04216	Ferroptosis
-hsa04217	Necroptosis
-hsa04218	Cellular senescence
-hsa04260	Cardiac muscle contraction
-hsa04261	Adrenergic signaling in cardiomyocytes
-hsa04270	Vascular smooth muscle contraction
-hsa04310	Wnt signaling pathway
-hsa04330	Notch signaling pathway
-hsa04340	Hedgehog signaling pathway
-hsa04350	TGF-beta signaling pathway
-hsa04360	Axon guidance
-hsa04370	VEGF signaling pathway
-hsa04371	Apelin signaling pathway
-hsa04380	Osteoclast differentiation
-hsa04390	Hippo signaling pathway
-hsa04392	Hippo signaling pathway
-hsa04510	Focal adhesion
-hsa04512	ECM-receptor interaction
-hsa04514	Cell adhesion molecules (CAMs)
-hsa04520	Adherens junction
-hsa04530	Tight junction
-hsa04540	Gap junction
-hsa04550	Signaling pathways regulating pluripotency of stem cells
-hsa04610	Complement and coagulation cascades
-hsa04611	Platelet activation
-hsa04612	Antigen processing and presentation
-hsa04614	Renin-angiotensin system
-hsa04620	Toll-like receptor signaling pathway
-hsa04621	NOD-like receptor signaling pathway
-hsa04622	RIG-I-like receptor signaling pathway
-hsa04623	Cytosolic DNA-sensing pathway
-hsa04625	C-type lectin receptor signaling pathway
-hsa04630	Jak-STAT signaling pathway
-hsa04640	Hematopoietic cell lineage
-hsa04650	Natural killer cell mediated cytotoxicity
-hsa04657	IL-17 signaling pathway
-hsa04658	Th1 and Th2 cell differentiation
-hsa04659	Th17 cell differentiation
-hsa04660	T cell receptor signaling pathway
-hsa04662	B cell receptor signaling pathway
-hsa04664	Fc epsilon RI signaling pathway
-hsa04666	Fc gamma R-mediated phagocytosis
-hsa04668	TNF signaling pathway
-hsa04670	Leukocyte transendothelial migration
-hsa04672	Intestinal immune network for IgA production
-hsa04710	Circadian rhythm
-hsa04713	Circadian entrainment
-hsa04714	Thermogenesis
-hsa04720	Long-term potentiation
-hsa04721	Synaptic vesicle cycle
-hsa04722	Neurotrophin signaling pathway
-hsa04723	Retrograde endocannabinoid signaling
-hsa04724	Glutamatergic synapse
-hsa04725	Cholinergic synapse
-hsa04726	Serotonergic synapse
-hsa04727	GABAergic synapse
-hsa04728	Dopaminergic synapse
-hsa04730	Long-term depression
-hsa04740	Olfactory transduction
-hsa04742	Taste transduction
-hsa04744	Phototransduction
-hsa04750	Inflammatory mediator regulation of TRP channels
-hsa04810	Regulation of actin cytoskeleton
-hsa04910	Insulin signaling pathway
-hsa04911	Insulin secretion
-hsa04912	GnRH signaling pathway
-hsa04913	Ovarian steroidogenesis
-hsa04914	Progesterone-mediated oocyte maturation
-hsa04915	Estrogen signaling pathway
-hsa04916	Melanogenesis
-hsa04917	Prolactin signaling pathway
-hsa04918	Thyroid hormone synthesis
-hsa04919	Thyroid hormone signaling pathway
-hsa04920	Adipocytokine signaling pathway
-hsa04921	Oxytocin signaling pathway
-hsa04922	Glucagon signaling pathway
-hsa04923	Regulation of lipolysis in adipocytes
-hsa04924	Renin secretion
-hsa04925	Aldosterone synthesis and secretion
-hsa04926	Relaxin signaling pathway
-hsa04927	Cortisol synthesis and secretion
-hsa04928	Parathyroid hormone synthesis, secretion and action
-hsa04930	Type II diabetes mellitus
-hsa04931	Insulin resistance
-hsa04932	Non-alcoholic fatty liver disease (NAFLD)
-hsa04933	AGE-RAGE signaling pathway in diabetic complications
-hsa04934	Cushing's syndrome
-hsa04940	Type I diabetes mellitus
-hsa04950	Maturity onset diabetes of the young
-hsa04960	Aldosterone-regulated sodium reabsorption
-hsa04961	Endocrine and other factor-regulated calcium reabsorption
-hsa04962	Vasopressin-regulated water reabsorption
-hsa04964	Proximal tubule bicarbonate reclamation
-hsa04966	Collecting duct acid secretion
-hsa04970	Salivary secretion
-hsa04971	Gastric acid secretion
-hsa04972	Pancreatic secretion
-hsa04973	Carbohydrate digestion and absorption
-hsa04974	Protein digestion and absorption
-hsa04975	Fat digestion and absorption
-hsa04976	Bile secretion
-hsa04977	Vitamin digestion and absorption
-hsa04978	Mineral absorption
-hsa04979	Cholesterol metabolism
-hsa05010	Alzheimer's disease
-hsa05012	Parkinson's disease
-hsa05014	Amyotrophic lateral sclerosis (ALS)
-hsa05016	Huntington's disease
-hsa05020	Prion diseases
-hsa05030	Cocaine addiction
-hsa05031	Amphetamine addiction
-hsa05032	Morphine addiction
-hsa05033	Nicotine addiction
-hsa05034	Alcoholism
-hsa05100	Bacterial invasion of epithelial cells
-hsa05110	Vibrio cholerae infection
-hsa05120	Epithelial cell signaling in Helicobacter pylori infection
-hsa05130	Pathogenic Escherichia coli infection
-hsa05131	Shigellosis
-hsa05132	Salmonella infection
-hsa05133	Pertussis
-hsa05134	Legionellosis
-hsa05140	Leishmaniasis
-hsa05142	Chagas disease (American trypanosomiasis)
-hsa05143	African trypanosomiasis
-hsa05144	Malaria
-hsa05145	Toxoplasmosis
-hsa05146	Amoebiasis
-hsa05150	Staphylococcus aureus infection
-hsa05152	Tuberculosis
-hsa05160	Hepatitis C
-hsa05161	Hepatitis B
-hsa05162	Measles
-hsa05163	Human cytomegalovirus infection
-hsa05164	Influenza A
-hsa05165	Human papillomavirus infection
-hsa05166	HTLV-I infection
-hsa05167	Kaposi's sarcoma-associated herpesvirus infection
-hsa05168	Herpes simplex infection
-hsa05169	Epstein-Barr virus infection
-hsa05200	Pathways in cancer
-hsa05202	Transcriptional misregulation in cancer
-hsa05203	Viral carcinogenesis
-hsa05204	Chemical carcinogenesis
-hsa05205	Proteoglycans in cancer
-hsa05206	MicroRNAs in cancer
-hsa05210	Colorectal cancer
-hsa05211	Renal cell carcinoma
-hsa05212	Pancreatic cancer
-hsa05213	Endometrial cancer
-hsa05214	Glioma
-hsa05215	Prostate cancer
-hsa05216	Thyroid cancer
-hsa05217	Basal cell carcinoma
-hsa05218	Melanoma
-hsa05219	Bladder cancer
-hsa05220	Chronic myeloid leukemia
-hsa05221	Acute myeloid leukemia
-hsa05222	Small cell lung cancer
-hsa05223	Non-small cell lung cancer
-hsa05224	Breast cancer
-hsa05225	Hepatocellular carcinoma
-hsa05226	Gastric cancer
-hsa05230	Central carbon metabolism in cancer
-hsa05231	Choline metabolism in cancer
-hsa05310	Asthma
-hsa05320	Autoimmune thyroid disease
-hsa05321	Inflammatory bowel disease (IBD)
-hsa05322	Systemic lupus erythematosus
-hsa05323	Rheumatoid arthritis
-hsa05330	Allograft rejection
-hsa05332	Graft-versus-host disease
-hsa05340	Primary immunodeficiency
-hsa05410	Hypertrophic cardiomyopathy (HCM)
-hsa05412	Arrhythmogenic right ventricular cardiomyopathy (ARVC)
-hsa05414	Dilated cardiomyopathy (DCM)
-hsa05416	Viral myocarditis
-hsa05418	Fluid shear stress and atherosclerosis
--- a/kegg_pathways.loc.sample	Fri Sep 14 09:52:28 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-hsa_pathways    Human (hsa)     hsa     tool-data/hsa_pathways.tsv
-mmu_pathways    Mouse (mmu)     mmu     tool-data/mmu_pathways.tsv
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kegg_pathways_list_index.loc.sample	Fri Nov 09 05:11:46 2018 -0500
@@ -0,0 +1,4 @@
+#value	name	path
+hsa	Homo sapiens	tool-data/hsa_pathways.loc
+mmu	Mus musculus	tool-data/mmu_pathways.loc
+rno	Rattus norvegicus	tool-data/rno_pathways.loc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kegg_pathways_visualization.R	Fri Nov 09 05:11:46 2018 -0500
@@ -0,0 +1,275 @@
+#!/usr/bin/Rscript
+#Rscript made for mapping genesID on KEGG pathway with Pathview package
+#input : csv file containing ids (uniprot or geneID) to map, plus parameters
+#output : KEGG pathway : jpeg or pdf file.
+
+options(warn=-1)  #TURN OFF WARNINGS !!!!!!
+
+suppressMessages(library("pathview"))
+
+read_file <- function(path,header){
+    file <- try(read.csv(path,header=header, sep="\t",stringsAsFactors = FALSE, quote="\"", check.names = F),silent=TRUE)
+    if (inherits(file,"try-error")){
+      stop("File not found !")
+    }else{
+      return(file)
+    }
+}
+
+##### fuction to clean and concatenate pathway name (allow more flexibility for user input) 
+concat_string <- function(x){
+  x <- gsub(" - .*","",x)
+  x <- gsub(" ","",x)
+  x <- gsub("-","",x)
+  x <- gsub("_","",x)
+  x <- gsub(",","",x)
+  x <- gsub("\\'","",x)
+  x <- gsub("\\(.*)","",x)
+  x <- gsub("\\/","",x)
+  x <- tolower(x)
+  return(x)
+}
+
+#return output suffix (pathway name) from id kegg (ex : hsa:00010)
+get_suffix <- function(pathways_list,species,id){
+  suffix = gsub("/","or",pathways_list[pathways_list[,1]==paste(species,id,sep=""),2])
+  suffix = gsub(" ","_",suffix)
+  if (nchar(suffix) > 50){
+    suffix = substr(suffix,1,50)
+  }
+  return(suffix)
+}
+
+str2bool <- function(x){
+  if (any(is.element(c("t","true"),tolower(x)))){
+    return (TRUE)
+  }else if (any(is.element(c("f","false"),tolower(x)))){
+    return (FALSE)
+  }else{
+    return(NULL)
+  }
+}
+
+is.letter <- function(x) grepl("[[:alpha:]]", x)
+
+#### hsa00010 -> 00010
+remove_kegg_prefix <- function(x){
+  x = gsub(":","",x)
+  if (substr(x,1,4) == 'path'){
+    x=substr(x,5,nchar(x))
+  }
+  if (is.letter(substr(x,1,3))){
+    x <- substr(x,4,nchar(x))
+  }
+  return(x)
+}
+
+clean_bad_character <- function(string)  {
+  string <- gsub("X","",string)
+  return(string)
+}
+
+get_list_from_cp <-function(list){
+  list = strsplit(list, "[ \t\n]+")[[1]]
+  list = list[list != ""]    #remove empty entry
+  list = gsub("-.+", "", list)  #Remove isoform accession number (e.g. "-2")
+  return(list)
+}
+
+#return a summary from the mapping with pathview in a vector
+mapping_summary <- function(pv.out,species,id,id_type){
+  
+  mapped <- pv.out$plot.data.gene$kegg.names[which(pv.out$plot.data.gene$all.mapped!='')]
+  nb_mapped <- length(mapped)
+  nb_kegg_id <- length(unique(pv.out$plot.data.gene$kegg.names))
+  ratio = round((nb_mapped/nb_kegg_id)*100, 2)
+  if (is.nan(ratio)) { ratio = ""}
+  pathway_id = paste(species,id,sep="")
+  pathway_name = as.character(pathways_list[pathways_list[,1]==pathway_id,][2])
+  
+  if (id_type=="geneid"){
+    row <- c(pathway_id,pathway_name,length(unique(geneID)),nb_kegg_id,nb_mapped,ratio,paste(mapped,collapse=";"))
+    names(row) <- c("KEGG pathway ID","pathway name","nb of Entrez gene ID used","nb of Entrez gene ID mapped",
+                    "nb of Entrez gene ID in the pathway", "ratio of Entrez gene ID mapped (%)","Entrez gene ID mapped")
+  }else if (id_type=="uniprotid"){
+    row <- c(pathway_id,pathway_name,length(unique(uniprotID)),length(unique(geneID)),nb_mapped,nb_kegg_id,ratio,paste(mapped,collapse=";"),paste(mapped2geneID[which(mapped2geneID[,2] %in% mapped)],collapse=";"))
+    names(row) <- c("KEGG pathway ID","pathway name","nb of Uniprot_AC used","nb of Entrez gene ID used","nb of Entrez gene ID mapped",
+                    "nb of Entrez gene ID in the pathway", "ratio of Entrez gene ID mapped (%)","Entrez gene ID mapped","uniprot_AC mapped")
+  }
+  return(row)
+}
+
+get_args <- function(){
+  
+  ## Collect arguments
+  args <- commandArgs(TRUE)
+  
+  ## Default setting when no arguments passed
+  if(length(args) < 1) {
+    args <- c("--help")
+  }
+  
+  ## Help section
+  if("--help" %in% args) {
+    cat("Pathview R script
+    Arguments:
+      --help                  Print this test
+      --input                 path of the input  file (must contains a colum of uniprot and/or geneID accession number)
+      --id_list               list of ids to use, ',' separated
+      --pathways_id           Id(s) of pathway(s) to use, if several, semicolon separated list : hsa00010;hsa05412 
+      --id_type               Type of accession number ('uniprotID' or 'geneID')
+      --id_column             Column containing accesion number of interest (ex : 'c1')
+      --header                Boolean, TRUE if header FALSE if not
+      --output                Output filename
+      --fold_change_col       Column(s) containing fold change values (comma separated)
+      --native_kegg           TRUE : native KEGG graph, FALSE : Graphviz graph
+      --species               KEGG species (hsa, mmu, ...)
+      --pathways_input        Tab with pathways in a column, output format of find_pathways
+      --pathway_col           Column of pathways to use
+      --header2               Boolean, TRUE if header FALSE if not
+      --pathways_list         path of file containg the species pathways list (hsa_pathways.loc, mmu_pathways.loc, ...)
+
+      Example:
+      ./PathView.R --input 'input.csv' --pathway_id '05412' --id_type 'uniprotID' --id_column 'c1' --header TRUE \n\n")
+    
+    q(save="no")
+  }
+  
+  parseArgs <- function(x) strsplit(sub("^--", "", x), "=")
+  argsDF <- as.data.frame(do.call("rbind", parseArgs(args)))
+  args <- as.list(as.character(argsDF$V2))
+  names(args) <- argsDF$V1
+  
+  return(args)
+}
+
+args <- get_args()
+
+#save(args,file="/home/dchristiany/proteore_project/ProteoRE/tools/kegg_pathways_visualization/args.Rda")
+#load("/home/dchristiany/proteore_project/ProteoRE/tools/kegg_pathways_visualization/args.Rda")
+
+###setting variables
+if (!is.null(args$pathways_id)) { 
+  ids <- get_list_from_cp(clean_bad_character(args$pathways_id))
+  ids <- sapply(ids, function(x) remove_kegg_prefix(x),USE.NAMES = FALSE)
+}else if (!is.null(args$pathways_input)){
+  header2 <- str2bool(args$header2)
+  pathway_col <- as.numeric(gsub("c", "" ,args$pathway_col))
+  pathways_file = read_file(args$pathways_input,header2)
+  ids <- sapply(rapply(strsplit(clean_bad_character(pathways_file[,pathway_col]),","),c), function(x) remove_kegg_prefix(x),USE.NAMES = FALSE)
+}
+pathways_list <- read_file(args$pathways_list,F)
+if (!is.null(args$id_list)) {
+  id_list <- get_list_from_cp(args$id_list)
+  }
+id_type <- tolower(args$id_type)
+ncol <- as.numeric(gsub("c", "" ,args$id_column))
+header <- str2bool(args$header)
+native_kegg <- str2bool(args$native_kegg)
+species=args$species
+fold_change_data = str2bool(args$fold_change_data)
+
+#org list used in mapped2geneID
+org <- c('Hs','Mm','Rn')
+names(org) <- c('hsa','mmu','rno')
+
+#read input file or list
+if (!is.null(args$input)){
+  tab <- read_file(args$input,header)
+  tab <- data.frame(tab[which(tab[ncol]!=""),])
+} else {
+  tab <- data.frame(id_list,stringsAsFactors = F)
+  ncol=1
+}
+
+#fold change columns
+#make sure its double and name expression value columns
+if (fold_change_data){
+  fold_change <- as.integer(unlist(strsplit(gsub("c","",args$fold_change_col),",")))
+  if (length(fold_change) > 3) { fold_change= fold_change[1:3] } 
+  for (i in 1:length(fold_change)) {
+    fc_col = fold_change[i]
+    colnames(tab)[fc_col] <- paste("e",i,sep='')
+    tab[,fc_col] <- as.double(gsub(",",".",as.character(tab[,fc_col]) ))
+  }
+}
+
+##### map uniprotID to entrez geneID
+if (id_type == "uniprotid") {
+  uniprotID = tab[,ncol]
+  mapped2geneID = id2eg(ids = uniprotID, category = "uniprot", org = org[[species]], pkg.name = NULL)
+  geneID = mapped2geneID[,2]
+  tab = cbind(tab,geneID)
+}else if (id_type == "geneid"){
+  colnames(tab)[ncol] <- "geneID"
+}
+
+geneID = as.character(tab$geneID[which(!is.na(tab$geneID))])
+geneID = gsub(" ","",geneID)
+geneID = unlist(strsplit(geneID,"[;]"))
+
+##### build matrix to map on KEGG pathway (kgml : KEGG xml)
+if (fold_change_data) {
+  geneID_indices = which(!duplicated(geneID))
+  if (length(fold_change) == 3){
+    mat <- as.data.frame(cbind(tab$e1,tab$e2,tab$e3)[which(!is.na(tab$geneID)),])
+    mat = mat[geneID_indices,]
+    row.names(mat) <- geneID[geneID_indices]
+  } else if (length(fold_change) == 2){
+    mat <- as.data.frame(cbind(tab$e1,tab$e2)[which(!is.na(tab$geneID)),])
+    mat = mat[geneID_indices,]
+    row.names(mat) <- geneID[geneID_indices]
+  } else {
+    mat <- as.data.frame(cbind(tab$e1)[which(!is.na(tab$geneID)),])
+    mat = mat[geneID_indices,]
+    names(mat) <- geneID[geneID_indices]
+  }
+} else {
+  mat <- geneID
+}
+
+#####mapping geneID (with or without expression values) on KEGG pathway
+plot.col.key= TRUE
+low_color = "green"
+mid_color = "#F3F781" #yellow
+high_color = "red"
+if (is.null(tab$e1)) {
+  plot.col.key= FALSE   #if there's no exrepession data, we don't show the color key
+  high_color = "#81BEF7" #blue
+}
+
+#create graph(s) and text output
+for (id in ids) {
+  suffix= get_suffix(pathways_list,species,id)
+  pv.out <- suppressMessages(pathview(gene.data = mat,
+           gene.idtype = "entrez", 
+           pathway.id = id,
+           species = species, 
+           kegg.dir = ".", 
+           out.suffix=suffix,
+           kegg.native = native_kegg,
+           low = list(gene = low_color, cpd = "blue"), 
+           mid = list(gene = mid_color, cpd = "transparent"), 
+           high = list(gene = high_color, cpd = "yellow"), 
+           na.col="#D8D8D8", #gray
+           cpd.data=NULL,
+           plot.col.key = plot.col.key,
+           pdf.size=c(9,9)))
+  
+  if (is.list(pv.out)){
+  
+    #creating text file
+    if (!exists("DF")) {
+      DF <- data.frame(t(mapping_summary(pv.out,species,id,id_type)),stringsAsFactors = F,check.names = F)
+    } else {
+      #print (mapping_summary(pv.out,species,id))
+      DF <- rbind(DF,data.frame(t(mapping_summary(pv.out,species,id,id_type)),stringsAsFactors = F,check.names = F))
+    }
+  }
+    
+}
+
+DF <- as.data.frame(apply(DF, c(1,2), function(x) gsub("^$|^ $", NA, x)))  #convert "" et " " to NA
+
+#text file output
+write.table(DF,file=args$output,quote=FALSE, sep='\t',row.names = FALSE, col.names = TRUE)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kegg_pathways_visualization.xml	Fri Nov 09 05:11:46 2018 -0500
@@ -0,0 +1,305 @@
+<tool id="kegg_pathways_visualization" name="KEGG pathways" version="2018.11.08">
+    <description>map visualisation (PathView)</description>
+    <requirements>
+        <requirement type="package" version="1.18.0">bioconductor-pathview</requirement>
+    </requirements>
+    <command detect_errors="exit_code"><![CDATA[
+        Rscript $__tool_directory__/kegg_pathways_visualization.R 
+        #if $input.ids == "text"
+            --id_list="$input.txt"
+        #else
+            --input="$input.file"
+            --id_column="$input.ncol"
+            --header="$input.header"  
+        #end if
+        #if $species.pathways.pathways_id != "pathways_file"
+            --pathways_id="$species.pathways.pids" 
+        #else 
+            --pathways_input="$species.pathways.file"
+            --header2="$species.pathways.header2"
+            --pathway_col="$species.pathways.ncol2"
+        #end if
+        --id_type="$id_type"  
+        --native_kegg="$native"
+        
+
+        #if $input.ids=="file" and $input.foldchange.fc=="true"
+            --fold_change_data="$input.foldchange.fc"
+            --fold_change_col="$input.foldchange.fc_col"
+        #else 
+            --fold_change_data="false"
+        #end if
+
+        --species=${species.ref_file} 
+        --pathways_list=$__tool_directory__/${ filter( lambda x: str( x[0] ) == str( $species.ref_file ), $__app__.tool_data_tables['kegg_pathways_list_index'].get_fields() )[0][-1] } 
+        --output="$text_output"
+
+    ]]></command>
+    <inputs>
+        <conditional name="species">
+        <param name="ref_file" type="select" label="Select species" >
+            <option value="hsa">Human (H. sapiens)</option>
+            <option value="mmu">Mouse (M. musculus)</option>
+            <option value="rno">Rat (R. norvegicus)</option>
+        </param>
+            <when value="hsa">
+                <conditional name="pathways">
+                <param name="pathways_id" type="select" label="Provide your pathway(s)" help="Enter KEGG pathway name(s) or KEGG pathway id(s)">
+                    <option value="pathways_names">KEGG pathway name(s)</option>
+                    <option value="pathways_ids">KEGG pathway id(s)</option>
+                    <option value="pathways_file">KEGG pathway id(s) from file</option>
+                </param>
+                <when value="pathways_names">
+                    <param name="pids" type="select" label="Select pathway(s)" multiple="true" help='You can select one or several pathway(s), you can write the beginning of your pathways to search using autocomplete'>
+                        <options from_data_table="hsa_pathways">
+                            <filter type="sort_by" column="1"/>
+                            <validator type="no_options" message="No indexes are available for the selected input dataset"/>
+                        </options>
+                    </param>
+                </when>
+                <when value="pathways_ids">
+                    <param name="pids" type="text" label="Copy/paste your pathway id(s)" help='IDs must be separated by tab, space or carriage return into the form field, for example: "hsa00010 hsa05412"'>
+                        <sanitizer invalid_char=''>
+                        <valid initial="string.printable">
+                            <remove value="&apos;"/>
+                        </valid>
+                        <mapping>
+                            <add source="&#x20;" target=""/> 
+                        </mapping>
+                        </sanitizer>
+                    </param>
+                </when>
+                <when value="pathways_file">
+                    <param name="file" type="data" format="txt,tabular" label="Select a file with a column of pathways id" help="Pathway id format : 'path:hsa00010' or 'hsa00010' or '00010'" />
+                    <param name="header2" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contains a header?" />
+                    <param name="ncol2" type="text" value="c1" label="The column which contains your pathways ids" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
+                </when>
+                </conditional>
+            </when>
+            <when value="mmu">
+                <conditional name="pathways">
+                <param name="pathways_id" type="select" label="Provide your pathway(s)" help="Enter KEGG pathway name(s) or KEGG pathway id(s)">
+                    <option value="pathways_names">KEGG pathway name(s)</option>
+                    <option value="pathways_ids">KEGG pathway id(s)</option>
+                    <option value="pathways_file">KEGG pathway id(s) from file</option>
+                </param>
+                <when value="pathways_names">
+                    <param name="pids" type="select" label="Select pathway(s)" multiple="true" help='You can select one or several pathway(s), you can write the beginning of your pathways to search using autocomplete'>
+                        <options from_data_table="mmu_pathways">
+                            <filter type="sort_by" column="1"/>
+                            <validator type="no_options" message="No indexes are available for the selected input dataset"/>
+                        </options>
+                    </param>
+                </when>
+                <when value="pathways_ids">
+                    <param name="pids" type="text" label="Copy/paste your pathway id(s)" help='IDs must be separated by tab, space or carriage return into the form field, for example: "mmu00053 mmu00340"'>
+                        <sanitizer invalid_char=''>
+                        <valid initial="string.printable">
+                            <remove value="&apos;"/>
+                        </valid>
+                        <mapping>
+                            <add source="&#x20;" target=""/> 
+                        </mapping>
+                        </sanitizer>
+                    </param>
+                </when>
+                <when value="pathways_file">
+                    <param name="file" type="data" format="txt,tabular" label="Select a file with a column of pathways id " help="Pathway id format : 'path:mmu00053' or 'mmu00053' or '00053'" />
+                    <param name="header2" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contain header?" />
+                    <param name="ncol2" type="text" value="c1" label="The column which contains your pathways ids" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
+                </when>
+                </conditional>
+            </when>
+            <when value="rno">
+                <conditional name="pathways">
+                <param name="pathways_id" type="select" label="Enter your pathway(s) name/id" help="Enter KEGG pathway name(s) or KEGG pathway id(s)">
+                    <option value="pathways_names">KEGG pathway name(s)</option>
+                    <option value="pathways_ids">KEGG pathway id(s)</option>
+                    <option value="pathways_file">KEGG pathway id(s) from file</option>
+                </param>
+                <when value="pathways_names">
+                    <param name="pids" type="select" label="Select pathway(s)" multiple="true" help='You can select one or several pathway(s), you can write the beginning of your pathways to search using autocomplete'>
+                        <options from_data_table="rno_pathways">
+                            <filter type="sort_by" column="1"/>
+                            <validator type="no_options" message="No indexes are available for the selected input dataset"/>
+                        </options>
+                    </param>
+                </when>
+                <when value="pathways_ids">
+                    <param name="pids" type="text" label="Copy/paste your pathway id(s)" help='IDs must be separated by tab, space or carriage return into the form field, for example: "hsa00010 hsa05412"'>
+                        <sanitizer invalid_char=''>
+                        <valid initial="string.printable">
+                            <remove value="&apos;"/>
+                        </valid>
+                        <mapping>
+                            <add source="&#x20;" target=""/> 
+                        </mapping>
+                        </sanitizer>
+                    </param>
+                </when>
+                <when value="pathways_file">
+                    <param name="file" type="data" format="txt,tabular" label="Select a file with a column of pathways id" help="Pathway id format : 'path:hsa00010' or 'hsa00010' or '00010'" />
+                    <param name="header2" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contains a header?" />
+                    <param name="ncol2" type="text" value="c1" label="The column which contains your pathways ids" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
+                </when>
+                </conditional>
+            </when>
+        </conditional>
+        <param name="id_type" type="select" label="Select your identifiers type :">
+            <option value="uniprotID">Uniprot Accession number</option>
+            <option value="geneID">Entrez gene ID</option>
+            <!--option value="keggid">KEGG genes ID</option-->
+        </param>
+        <conditional name="input" >
+            <param name="ids" type="select" label="Enter your identifiers (Uniprot AC or Entrez gene ID)" help="Copy/paste or ID list from a file (e.g. table)" >
+                <option value="text">Copy/paste your identifiers</option>
+                <option value="file" selected="true">Input file containing your identifiers</option>
+            </param>
+            <when value="text" >
+                <param name="txt" type="text" label="Copy/paste your identifiers" help='IDs must be separated by tab, space or carriage return into the form field, for example: P31946 P62258' >
+                    <sanitizer invalid_char=''>
+                        <valid initial="string.printable">
+                            <remove value="&apos;"/>
+                        </valid>
+                        <mapping initial="none">
+                            <add source="&apos;" target="__sq__"/>
+                        </mapping>
+                    </sanitizer>
+                </param>
+            </when>
+            <when value="file" >
+                <param name="file" type="data" format="txt,tabular" label="Select a file that contains your list of IDs" help="" />
+                <param name="header" type="boolean" checked="true" truevalue="true" falsevalue="false" label="Does your input file contains a header?" />
+                <param name="ncol" type="text" value="c1" label="The column which contains your IDs to map" help='For example, fill in "c1" if it is the first column, "c2" if it is the second column and so on' />
+                <conditional name="foldchange" >
+                <param name="fc" type="boolean" checked="false" truevalue="true" falsevalue="false" label="Do you have fold change values to represent on the graph ?" default="false"/>
+                    <when value="true">
+                        <param name="fc_col" type="text" label="Please enter column(s) number of fold change data separated by ','. 3 columns max" help="For example : c1,c3,c4"/>
+                    </when>
+                    <when value="false"/>
+                </conditional>
+            </when>
+        </conditional>
+        <param name="native" type="select" label="Choose the output graphical format">
+            <option value="true">KEGG map (.png)</option>
+            <option value="false">Graphviz layout engine (.pdf)</option> 
+        </param>
+    </inputs>
+    <outputs>
+        <data name="text_output" format="tsv" label="KEGG pathways visualization text output"/>
+        <collection type="list" label="KEGG pathways map from ${input.file.name}" name="graphviz_output_from_file">
+            <filter>native=="false" and input["ids"] == "file"</filter>
+                <discover_datasets pattern="(?P&lt;designation&gt;.+\..*)\.pdf" ext="pdf" />
+        </collection>
+        <collection type="list" label="KEGG pathways map from ${input.file.name}" name="kegg_graph_output_from_file">
+            <filter>native=="true" and input["ids"] == "file"</filter>
+                <discover_datasets pattern="(?P&lt;designation&gt;.+\..*)\.png" ext="png"/>
+        </collection>
+        <collection type="list" label="KEGG pathways map" name="graphviz_output_from_list">
+            <filter>native=="false" and input["ids"] == "text"</filter>
+                <discover_datasets pattern="(?P&lt;designation&gt;.+\..*)\.pdf" ext="pdf" />
+        </collection>
+        <collection type="list" label="KEGG pathways map" name="kegg_graph_output_from_list">
+            <filter>native=="true" and input["ids"] == "text"</filter>
+                <discover_datasets pattern="(?P&lt;designation&gt;.+\..*)\.png" ext="png" />
+        </collection>
+    </outputs>
+    <tests>
+        <test>
+            <conditional name="input">
+                <param name="ids" value="file"/>
+                <param name="file" value="Lacombe_et_al_2017_OK.txt"/>
+                <param name="header" value="true"/>
+                <param name="ncol" value="c1"/>
+            </conditional>
+            <conditional name="pathways">
+                <param name="pathways_id" value="pathways_ids"/>
+                <param name="pids" value="04514,05167,00010"/>
+            </conditional>
+            <param name="id_type" value="uniprotID"/>
+            <param name="species" value="hsa"/>
+            <param name="native" value="true"/>            
+            <output name="kegg_from_file" file="hsa04514.pathview.png" compare="sim_size"/>
+            <output name="kegg_from_file" file="hsa05167.pathview.png" compare="sim_size"/>
+            <output name="kegg_from_file" file="hsa00010.pathview.png" compare="sim_size"/>
+        </test>
+    </tests>
+    <help><![CDATA[
+This tool map a list of Uniprot Accession number or Entrez gene ID to KEGG pathway with pathview R package.
+
+You can map Entrez gene IDs / Uniprot accession number from three species : human, mouse and rat.
+
+If your input have another type of IDs, please use the ID_Converter tool.
+
+**Input:**
+
+
+- KEGG Pathways IDs to be used for mapping can be set by:
+    - chosing from the KEGG pathways name list 
+    - giving a list (copy/paste)
+    - importing a list from a dataset (column) - output of KEGG pathways identification and coverage can be used (1st column)
+- Genes/proteins ids to map can be either a list of Entrez genes IDs / Uniprot accession number or a file (tabular, tsv, txt) containing at least one column of Entrez genes IDs / Uniprot accession number. 
+- fold change values (up to three columns) from a dataset (same dataset as for Genes/proteins ids to map)
+
+You can see below an example of an input file with identifiers (uniprot_AC) and fold_change values.
+
+.. csv-table:: Simulated data
+   :header: "Uniprot_AC","Protein.name","Number_of_peptides","fc_values 1","fc_values 2","fc_values 3"
+
+   "P15924","Desmoplakin","69","0.172302292051025","-0.757435966487116","0.0411240398990759"
+   "P02538","Keratin, type II cytoskeletal 6A","53","-0.988842456122076","0.654626325100182","-0.219153396366064"
+   "P02768","Serum albumin","44","-0.983493243315454","0.113752002761474","-0.645886132600729"
+   "P08779","Keratin, type I cytoskeletal 16","29","0.552302597284443","-0.329045605110646","2.10616106806788"
+
+|
+
+**Output:**
+
+- a **collection dataset** named 'KEGG pathways map from <dataset>', one file (png or pdf) for each given pathway.
+- a **summary text file** (.tsv) of the mapping(s) with the following columns
+    - **KEGG pathway ID**: KEGG pathway(s) used to map given genes/proteins ids
+    - **pathway name**: name(s) of KEGG pathway(s) used for mapping
+    - **nb of Uniprot_AC used** (only when Uniprot accession number is given): number of Uniprot accession number which will be converted to Entrez genes IDs
+    - **nb of Entrez gene ID used**: number of Entrez gene IDs used for mapping
+    - **nb of Entrez gene ID mapped**: number of Entrez gene IDs mapped on a given pathway
+    - **nb of Entrez gene ID in the pathway**: number total of Entrez gene IDs in a given pathway
+    - **ratio of Entrez gene ID mapped**: number of Entrez gene IDs mapped / number total of Entrez gene IDs
+    - **Entrez gene ID mapped**: list of mapped Entrez gene IDs
+    - **uniprot_AC mapped** (only when Uniprot accession number is given): list of Uniprot accession number corresponding to the mapped Entrez gene IDs
+
+-----
+
+.. class:: infomark
+
+**Database:**
+
+KEGG Pathways names list are from  http://rest.kegg.jp/list/pathway/
+
+User manual / Documentation: http://www.bioconductor.org/packages/release/bioc/html/pathview.html
+
+
+-----
+
+.. class:: infomark
+
+**Authors**
+
+David Christiany, Florence Combes, Yves Vandenbrouck CEA, INSERM, CNRS, Grenoble-Alpes University, BIG Institute, FR
+
+Sandra Dérozier, Olivier Rué, Christophe Caron, Valentin Loux INRA, Paris-Saclay University, MAIAGE Unit, Migale Bioinformatics platform
+
+This work has been partially funded through the French National Agency for Research (ANR) IFB project.
+
+Contact support@proteore.org for any questions or concerns about the Galaxy implementation of this tool.
+    ]]></help>
+    <citations>
+        <citation type="doi">10.1093/nar/gkx372</citation>
+        <citation type="bibtex">
+@misc{renameTODO,
+  author = {Weijun Luo},
+  year = {2013},
+  title = {pathview},
+  url = {https://bioconductor.org/packages/release/bioc/html/pathview.html},
+}</citation>
+    </citations>
+</tool>
--- a/mmu_pathways.loc.sample	Fri Sep 14 09:52:28 2018 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,326 +0,0 @@
-#value	name
-mmu00010	Glycolysis / Gluconeogenesis
-mmu00020	Citrate cycle (TCA cycle)
-mmu00030	Pentose phosphate pathway
-mmu00040	Pentose and glucuronate interconversions
-mmu00051	Fructose and mannose metabolism
-mmu00052	Galactose metabolism
-mmu00053	Ascorbate and aldarate metabolism
-mmu00061	Fatty acid biosynthesis
-mmu00062	Fatty acid elongation
-mmu00071	Fatty acid degradation
-mmu00072	Synthesis and degradation of ketone bodies
-mmu00100	Steroid biosynthesis
-mmu00120	Primary bile acid biosynthesis
-mmu00130	Ubiquinone and other terpenoid-quinone biosynthesis
-mmu00140	Steroid hormone biosynthesis
-mmu00190	Oxidative phosphorylation
-mmu00220	Arginine biosynthesis
-mmu00230	Purine metabolism
-mmu00232	Caffeine metabolism
-mmu00240	Pyrimidine metabolism
-mmu00250	Alanine, aspartate and glutamate metabolism
-mmu00260	Glycine, serine and threonine metabolism
-mmu00270	Cysteine and methionine metabolism
-mmu00280	Valine, leucine and isoleucine degradation
-mmu00290	Valine, leucine and isoleucine biosynthesis
-mmu00310	Lysine degradation
-mmu00330	Arginine and proline metabolism
-mmu00340	Histidine metabolism
-mmu00350	Tyrosine metabolism
-mmu00360	Phenylalanine metabolism
-mmu00380	Tryptophan metabolism
-mmu00400	Phenylalanine, tyrosine and tryptophan biosynthesis
-mmu00410	beta-Alanine metabolism
-mmu00430	Taurine and hypotaurine metabolism
-mmu00440	Phosphonate and phosphinate metabolism
-mmu00450	Selenocompound metabolism
-mmu00471	D-Glutamine and D-glutamate metabolism
-mmu00472	D-Arginine and D-ornithine metabolism
-mmu00480	Glutathione metabolism
-mmu00500	Starch and sucrose metabolism
-mmu00510	N-Glycan biosynthesis
-mmu00511	Other glycan degradation
-mmu00512	Mucin type O-glycan biosynthesis
-mmu00514	Other types of O-glycan biosynthesis
-mmu00515	Mannose type O-glycan biosynthesis
-mmu00520	Amino sugar and nucleotide sugar metabolism
-mmu00524	Neomycin, kanamycin and gentamicin biosynthesis
-mmu00531	Glycosaminoglycan degradation
-mmu00532	Glycosaminoglycan biosynthesis
-mmu00533	Glycosaminoglycan biosynthesis
-mmu00534	Glycosaminoglycan biosynthesis
-mmu00561	Glycerolipid metabolism
-mmu00562	Inositol phosphate metabolism
-mmu00563	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-mmu00564	Glycerophospholipid metabolism
-mmu00565	Ether lipid metabolism
-mmu00590	Arachidonic acid metabolism
-mmu00591	Linoleic acid metabolism
-mmu00592	alpha-Linolenic acid metabolism
-mmu00600	Sphingolipid metabolism
-mmu00601	Glycosphingolipid biosynthesis
-mmu00603	Glycosphingolipid biosynthesis
-mmu00604	Glycosphingolipid biosynthesis
-mmu00620	Pyruvate metabolism
-mmu00630	Glyoxylate and dicarboxylate metabolism
-mmu00640	Propanoate metabolism
-mmu00650	Butanoate metabolism
-mmu00670	One carbon pool by folate
-mmu00730	Thiamine metabolism
-mmu00740	Riboflavin metabolism
-mmu00750	Vitamin B6 metabolism
-mmu00760	Nicotinate and nicotinamide metabolism
-mmu00770	Pantothenate and CoA biosynthesis
-mmu00780	Biotin metabolism
-mmu00785	Lipoic acid metabolism
-mmu00790	Folate biosynthesis
-mmu00830	Retinol metabolism
-mmu00860	Porphyrin and chlorophyll metabolism
-mmu00900	Terpenoid backbone biosynthesis
-mmu00910	Nitrogen metabolism
-mmu00920	Sulfur metabolism
-mmu00970	Aminoacyl-tRNA biosynthesis
-mmu00980	Metabolism of xenobiotics by cytochrome P450
-mmu00982	Drug metabolism
-mmu00983	Drug metabolism
-mmu01040	Biosynthesis of unsaturated fatty acids
-mmu01100	Metabolic pathways
-mmu01200	Carbon metabolism
-mmu01210	2-Oxocarboxylic acid metabolism
-mmu01212	Fatty acid metabolism
-mmu01230	Biosynthesis of amino acids
-mmu01521	EGFR tyrosine kinase inhibitor resistance
-mmu01522	Endocrine resistance
-mmu01523	Antifolate resistance
-mmu01524	Platinum drug resistance
-mmu02010	ABC transporters
-mmu03008	Ribosome biogenesis in eukaryotes
-mmu03010	Ribosome
-mmu03013	RNA transport
-mmu03015	mRNA surveillance pathway
-mmu03018	RNA degradation
-mmu03020	RNA polymerase
-mmu03022	Basal transcription factors
-mmu03030	DNA replication
-mmu03040	Spliceosome
-mmu03050	Proteasome
-mmu03060	Protein export
-mmu03320	PPAR signaling pathway
-mmu03410	Base excision repair
-mmu03420	Nucleotide excision repair
-mmu03430	Mismatch repair
-mmu03440	Homologous recombination
-mmu03450	Non-homologous end-joining
-mmu03460	Fanconi anemia pathway
-mmu04010	MAPK signaling pathway
-mmu04012	ErbB signaling pathway
-mmu04014	Ras signaling pathway
-mmu04015	Rap1 signaling pathway
-mmu04020	Calcium signaling pathway
-mmu04022	cGMP-PKG signaling pathway
-mmu04024	cAMP signaling pathway
-mmu04060	Cytokine-cytokine receptor interaction
-mmu04062	Chemokine signaling pathway
-mmu04064	NF-kappa B signaling pathway
-mmu04066	HIF-1 signaling pathway
-mmu04068	FoxO signaling pathway
-mmu04070	Phosphatidylinositol signaling system
-mmu04071	Sphingolipid signaling pathway
-mmu04072	Phospholipase D signaling pathway
-mmu04080	Neuroactive ligand-receptor interaction
-mmu04110	Cell cycle
-mmu04114	Oocyte meiosis
-mmu04115	p53 signaling pathway
-mmu04120	Ubiquitin mediated proteolysis
-mmu04122	Sulfur relay system
-mmu04130	SNARE interactions in vesicular transport
-mmu04136	Autophagy
-mmu04137	Mitophagy
-mmu04140	Autophagy
-mmu04141	Protein processing in endoplasmic reticulum
-mmu04142	Lysosome
-mmu04144	Endocytosis
-mmu04145	Phagosome
-mmu04146	Peroxisome
-mmu04150	mTOR signaling pathway
-mmu04151	PI3K-Akt signaling pathway
-mmu04152	AMPK signaling pathway
-mmu04210	Apoptosis
-mmu04211	Longevity regulating pathway
-mmu04213	Longevity regulating pathway
-mmu04215	Apoptosis
-mmu04216	Ferroptosis
-mmu04217	Necroptosis
-mmu04218	Cellular senescence
-mmu04260	Cardiac muscle contraction
-mmu04261	Adrenergic signaling in cardiomyocytes
-mmu04270	Vascular smooth muscle contraction
-mmu04310	Wnt signaling pathway
-mmu04330	Notch signaling pathway
-mmu04340	Hedgehog signaling pathway
-mmu04350	TGF-beta signaling pathway
-mmu04360	Axon guidance
-mmu04370	VEGF signaling pathway
-mmu04371	Apelin signaling pathway
-mmu04380	Osteoclast differentiation
-mmu04390	Hippo signaling pathway
-mmu04392	Hippo signaling pathway
-mmu04510	Focal adhesion
-mmu04512	ECM-receptor interaction
-mmu04514	Cell adhesion molecules (CAMs)
-mmu04520	Adherens junction
-mmu04530	Tight junction
-mmu04540	Gap junction
-mmu04550	Signaling pathways regulating pluripotency of stem cells
-mmu04610	Complement and coagulation cascades
-mmu04611	Platelet activation
-mmu04612	Antigen processing and presentation
-mmu04614	Renin-angiotensin system
-mmu04620	Toll-like receptor signaling pathway
-mmu04621	NOD-like receptor signaling pathway
-mmu04622	RIG-I-like receptor signaling pathway
-mmu04623	Cytosolic DNA-sensing pathway
-mmu04625	C-type lectin receptor signaling pathway
-mmu04630	Jak-STAT signaling pathway
-mmu04640	Hematopoietic cell lineage
-mmu04650	Natural killer cell mediated cytotoxicity
-mmu04657	IL-17 signaling pathway
-mmu04658	Th1 and Th2 cell differentiation
-mmu04659	Th17 cell differentiation
-mmu04660	T cell receptor signaling pathway
-mmu04662	B cell receptor signaling pathway
-mmu04664	Fc epsilon RI signaling pathway
-mmu04666	Fc gamma R-mediated phagocytosis
-mmu04668	TNF signaling pathway
-mmu04670	Leukocyte transendothelial migration
-mmu04672	Intestinal immune network for IgA production
-mmu04710	Circadian rhythm
-mmu04713	Circadian entrainment
-mmu04714	Thermogenesis
-mmu04720	Long-term potentiation
-mmu04721	Synaptic vesicle cycle
-mmu04722	Neurotrophin signaling pathway
-mmu04723	Retrograde endocannabinoid signaling
-mmu04724	Glutamatergic synapse
-mmu04725	Cholinergic synapse
-mmu04726	Serotonergic synapse
-mmu04727	GABAergic synapse
-mmu04728	Dopaminergic synapse
-mmu04730	Long-term depression
-mmu04740	Olfactory transduction
-mmu04742	Taste transduction
-mmu04744	Phototransduction
-mmu04750	Inflammatory mediator regulation of TRP channels
-mmu04810	Regulation of actin cytoskeleton
-mmu04910	Insulin signaling pathway
-mmu04911	Insulin secretion
-mmu04912	GnRH signaling pathway
-mmu04913	Ovarian steroidogenesis
-mmu04914	Progesterone-mediated oocyte maturation
-mmu04915	Estrogen signaling pathway
-mmu04916	Melanogenesis
-mmu04917	Prolactin signaling pathway
-mmu04918	Thyroid hormone synthesis
-mmu04919	Thyroid hormone signaling pathway
-mmu04920	Adipocytokine signaling pathway
-mmu04921	Oxytocin signaling pathway
-mmu04922	Glucagon signaling pathway
-mmu04923	Regulation of lipolysis in adipocytes
-mmu04924	Renin secretion
-mmu04925	Aldosterone synthesis and secretion
-mmu04926	Relaxin signaling pathway
-mmu04927	Cortisol synthesis and secretion
-mmu04928	Parathyroid hormone synthesis, secretion and action
-mmu04930	Type II diabetes mellitus
-mmu04931	Insulin resistance
-mmu04932	Non-alcoholic fatty liver disease (NAFLD)
-mmu04933	AGE-RAGE signaling pathway in diabetic complications
-mmu04934	Cushing's syndrome
-mmu04940	Type I diabetes mellitus
-mmu04950	Maturity onset diabetes of the young
-mmu04960	Aldosterone-regulated sodium reabsorption
-mmu04961	Endocrine and other factor-regulated calcium reabsorption
-mmu04962	Vasopressin-regulated water reabsorption
-mmu04964	Proximal tubule bicarbonate reclamation
-mmu04966	Collecting duct acid secretion
-mmu04970	Salivary secretion
-mmu04971	Gastric acid secretion
-mmu04972	Pancreatic secretion
-mmu04973	Carbohydrate digestion and absorption
-mmu04974	Protein digestion and absorption
-mmu04975	Fat digestion and absorption
-mmu04976	Bile secretion
-mmu04977	Vitamin digestion and absorption
-mmu04978	Mineral absorption
-mmu04979	Cholesterol metabolism
-mmu05010	Alzheimer's disease
-mmu05012	Parkinson's disease
-mmu05014	Amyotrophic lateral sclerosis (ALS)
-mmu05016	Huntington's disease
-mmu05020	Prion diseases
-mmu05030	Cocaine addiction
-mmu05031	Amphetamine addiction
-mmu05032	Morphine addiction
-mmu05033	Nicotine addiction
-mmu05034	Alcoholism
-mmu05100	Bacterial invasion of epithelial cells
-mmu05132	Salmonella infection
-mmu05133	Pertussis
-mmu05134	Legionellosis
-mmu05140	Leishmaniasis
-mmu05142	Chagas disease (American trypanosomiasis)
-mmu05143	African trypanosomiasis
-mmu05144	Malaria
-mmu05145	Toxoplasmosis
-mmu05146	Amoebiasis
-mmu05150	Staphylococcus aureus infection
-mmu05152	Tuberculosis
-mmu05160	Hepatitis C
-mmu05161	Hepatitis B
-mmu05162	Measles
-mmu05163	Human cytomegalovirus infection
-mmu05164	Influenza A
-mmu05165	Human papillomavirus infection
-mmu05166	HTLV-I infection
-mmu05167	Kaposi's sarcoma-associated herpesvirus infection
-mmu05168	Herpes simplex infection
-mmu05169	Epstein-Barr virus infection
-mmu05200	Pathways in cancer
-mmu05202	Transcriptional misregulation in cancer
-mmu05203	Viral carcinogenesis
-mmu05204	Chemical carcinogenesis
-mmu05205	Proteoglycans in cancer
-mmu05206	MicroRNAs in cancer
-mmu05210	Colorectal cancer
-mmu05211	Renal cell carcinoma
-mmu05212	Pancreatic cancer
-mmu05213	Endometrial cancer
-mmu05214	Glioma
-mmu05215	Prostate cancer
-mmu05216	Thyroid cancer
-mmu05217	Basal cell carcinoma
-mmu05218	Melanoma
-mmu05219	Bladder cancer
-mmu05220	Chronic myeloid leukemia
-mmu05221	Acute myeloid leukemia
-mmu05222	Small cell lung cancer
-mmu05223	Non-small cell lung cancer
-mmu05224	Breast cancer
-mmu05225	Hepatocellular carcinoma
-mmu05226	Gastric cancer
-mmu05230	Central carbon metabolism in cancer
-mmu05231	Choline metabolism in cancer
-mmu05310	Asthma
-mmu05320	Autoimmune thyroid disease
-mmu05321	Inflammatory bowel disease (IBD)
-mmu05322	Systemic lupus erythematosus
-mmu05323	Rheumatoid arthritis
-mmu05330	Allograft rejection
-mmu05332	Graft-versus-host disease
-mmu05340	Primary immunodeficiency
-mmu05410	Hypertrophic cardiomyopathy (HCM)
-mmu05412	Arrhythmogenic right ventricular cardiomyopathy (ARVC)
-mmu05414	Dilated cardiomyopathy (DCM)
-mmu05416	Viral myocarditis
-mmu05418	Fluid shear stress and atherosclerosis
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tool-data/rno_pathways.loc	Fri Nov 09 05:11:46 2018 -0500
@@ -0,0 +1,326 @@
+rno00010	Glycolysis / Gluconeogenesis
+rno00020	Citrate cycle (TCA cycle)
+rno00030	Pentose phosphate pathway
+rno00040	Pentose and glucuronate interconversions
+rno00051	Fructose and mannose metabolism
+rno00052	Galactose metabolism
+rno00053	Ascorbate and aldarate metabolism
+rno00061	Fatty acid biosynthesis
+rno00062	Fatty acid elongation
+rno00071	Fatty acid degradation
+rno00072	Synthesis and degradation of ketone bodies
+rno00100	Steroid biosynthesis
+rno00120	Primary bile acid biosynthesis
+rno00130	Ubiquinone and other terpenoid-quinone biosynthesis
+rno00140	Steroid hormone biosynthesis
+rno00190	Oxidative phosphorylation
+rno00220	Arginine biosynthesis
+rno00230	Purine metabolism
+rno00232	Caffeine metabolism
+rno00240	Pyrimidine metabolism
+rno00250	Alanine, aspartate and glutamate metabolism
+rno00260	Glycine, serine and threonine metabolism
+rno00270	Cysteine and methionine metabolism
+rno00280	Valine, leucine and isoleucine degradation
+rno00290	Valine, leucine and isoleucine biosynthesis
+rno00310	Lysine degradation
+rno00330	Arginine and proline metabolism
+rno00340	Histidine metabolism
+rno00350	Tyrosine metabolism
+rno00360	Phenylalanine metabolism
+rno00380	Tryptophan metabolism
+rno00400	Phenylalanine, tyrosine and tryptophan biosynthesis
+rno00410	beta-Alanine metabolism
+rno00430	Taurine and hypotaurine metabolism
+rno00440	Phosphonate and phosphinate metabolism
+rno00450	Selenocompound metabolism
+rno00471	D-Glutamine and D-glutamate metabolism
+rno00472	D-Arginine and D-ornithine metabolism
+rno00480	Glutathione metabolism
+rno00500	Starch and sucrose metabolism
+rno00510	N-Glycan biosynthesis
+rno00511	Other glycan degradation
+rno00512	Mucin type O-glycan biosynthesis
+rno00514	Other types of O-glycan biosynthesis
+rno00515	Mannose type O-glycan biosynthesis
+rno00520	Amino sugar and nucleotide sugar metabolism
+rno00524	Neomycin, kanamycin and gentamicin biosynthesis
+rno00531	Glycosaminoglycan degradation
+rno00532	Glycosaminoglycan biosynthesis
+rno00533	Glycosaminoglycan biosynthesis
+rno00534	Glycosaminoglycan biosynthesis
+rno00561	Glycerolipid metabolism
+rno00562	Inositol phosphate metabolism
+rno00563	Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
+rno00564	Glycerophospholipid metabolism
+rno00565	Ether lipid metabolism
+rno00590	Arachidonic acid metabolism
+rno00591	Linoleic acid metabolism
+rno00592	alpha-Linolenic acid metabolism
+rno00600	Sphingolipid metabolism
+rno00601	Glycosphingolipid biosynthesis
+rno00603	Glycosphingolipid biosynthesis
+rno00604	Glycosphingolipid biosynthesis
+rno00620	Pyruvate metabolism
+rno00630	Glyoxylate and dicarboxylate metabolism
+rno00640	Propanoate metabolism
+rno00650	Butanoate metabolism
+rno00670	One carbon pool by folate
+rno00730	Thiamine metabolism
+rno00740	Riboflavin metabolism
+rno00750	Vitamin B6 metabolism
+rno00760	Nicotinate and nicotinamide metabolism
+rno00770	Pantothenate and CoA biosynthesis
+rno00780	Biotin metabolism
+rno00785	Lipoic acid metabolism
+rno00790	Folate biosynthesis
+rno00830	Retinol metabolism
+rno00860	Porphyrin and chlorophyll metabolism
+rno00900	Terpenoid backbone biosynthesis
+rno00910	Nitrogen metabolism
+rno00920	Sulfur metabolism
+rno00970	Aminoacyl-tRNA biosynthesis
+rno00980	Metabolism of xenobiotics by cytochrome P450
+rno00982	Drug metabolism
+rno00983	Drug metabolism
+rno01040	Biosynthesis of unsaturated fatty acids
+rno01100	Metabolic pathways
+rno01200	Carbon metabolism
+rno01210	2-Oxocarboxylic acid metabolism
+rno01212	Fatty acid metabolism
+rno01230	Biosynthesis of amino acids
+rno01521	EGFR tyrosine kinase inhibitor resistance
+rno01522	Endocrine resistance
+rno01523	Antifolate resistance
+rno01524	Platinum drug resistance
+rno02010	ABC transporters
+rno03008	Ribosome biogenesis in eukaryotes
+rno03010	Ribosome
+rno03013	RNA transport
+rno03015	mRNA surveillance pathway
+rno03018	RNA degradation
+rno03020	RNA polymerase
+rno03022	Basal transcription factors
+rno03030	DNA replication
+rno03040	Spliceosome
+rno03050	Proteasome
+rno03060	Protein export
+rno03320	PPAR signaling pathway
+rno03410	Base excision repair
+rno03420	Nucleotide excision repair
+rno03430	Mismatch repair
+rno03440	Homologous recombination
+rno03450	Non-homologous end-joining
+rno03460	Fanconi anemia pathway
+rno04010	MAPK signaling pathway
+rno04012	ErbB signaling pathway
+rno04014	Ras signaling pathway
+rno04015	Rap1 signaling pathway
+rno04020	Calcium signaling pathway
+rno04022	cGMP-PKG signaling pathway
+rno04024	cAMP signaling pathway
+rno04060	Cytokine-cytokine receptor interaction
+rno04062	Chemokine signaling pathway
+rno04064	NF-kappa B signaling pathway
+rno04066	HIF-1 signaling pathway
+rno04068	FoxO signaling pathway
+rno04070	Phosphatidylinositol signaling system
+rno04071	Sphingolipid signaling pathway
+rno04072	Phospholipase D signaling pathway
+rno04080	Neuroactive ligand-receptor interaction
+rno04110	Cell cycle
+rno04114	Oocyte meiosis
+rno04115	p53 signaling pathway
+rno04120	Ubiquitin mediated proteolysis
+rno04122	Sulfur relay system
+rno04130	SNARE interactions in vesicular transport
+rno04136	Autophagy
+rno04137	Mitophagy
+rno04140	Autophagy
+rno04141	Protein processing in endoplasmic reticulum
+rno04142	Lysosome
+rno04144	Endocytosis
+rno04145	Phagosome
+rno04146	Peroxisome
+rno04150	mTOR signaling pathway
+rno04151	PI3K-Akt signaling pathway
+rno04152	AMPK signaling pathway
+rno04210	Apoptosis
+rno04211	Longevity regulating pathway
+rno04213	Longevity regulating pathway
+rno04215	Apoptosis
+rno04216	Ferroptosis
+rno04217	Necroptosis
+rno04218	Cellular senescence
+rno04260	Cardiac muscle contraction
+rno04261	Adrenergic signaling in cardiomyocytes
+rno04270	Vascular smooth muscle contraction
+rno04310	Wnt signaling pathway
+rno04330	Notch signaling pathway
+rno04340	Hedgehog signaling pathway
+rno04350	TGF-beta signaling pathway
+rno04360	Axon guidance
+rno04370	VEGF signaling pathway
+rno04371	Apelin signaling pathway
+rno04380	Osteoclast differentiation
+rno04390	Hippo signaling pathway
+rno04392	Hippo signaling pathway
+rno04510	Focal adhesion
+rno04512	ECM-receptor interaction
+rno04514	Cell adhesion molecules (CAMs)
+rno04520	Adherens junction
+rno04530	Tight junction
+rno04540	Gap junction
+rno04550	Signaling pathways regulating pluripotency of stem cells
+rno04610	Complement and coagulation cascades
+rno04611	Platelet activation
+rno04612	Antigen processing and presentation
+rno04614	Renin-angiotensin system
+rno04620	Toll-like receptor signaling pathway
+rno04621	NOD-like receptor signaling pathway
+rno04622	RIG-I-like receptor signaling pathway
+rno04623	Cytosolic DNA-sensing pathway
+rno04625	C-type lectin receptor signaling pathway
+rno04630	JAK-STAT signaling pathway
+rno04640	Hematopoietic cell lineage
+rno04650	Natural killer cell mediated cytotoxicity
+rno04657	IL-17 signaling pathway
+rno04658	Th1 and Th2 cell differentiation
+rno04659	Th17 cell differentiation
+rno04660	T cell receptor signaling pathway
+rno04662	B cell receptor signaling pathway
+rno04664	Fc epsilon RI signaling pathway
+rno04666	Fc gamma R-mediated phagocytosis
+rno04668	TNF signaling pathway
+rno04670	Leukocyte transendothelial migration
+rno04672	Intestinal immune network for IgA production
+rno04710	Circadian rhythm
+rno04713	Circadian entrainment
+rno04714	Thermogenesis
+rno04720	Long-term potentiation
+rno04721	Synaptic vesicle cycle
+rno04722	Neurotrophin signaling pathway
+rno04723	Retrograde endocannabinoid signaling
+rno04724	Glutamatergic synapse
+rno04725	Cholinergic synapse
+rno04726	Serotonergic synapse
+rno04727	GABAergic synapse
+rno04728	Dopaminergic synapse
+rno04730	Long-term depression
+rno04740	Olfactory transduction
+rno04742	Taste transduction
+rno04744	Phototransduction
+rno04750	Inflammatory mediator regulation of TRP channels
+rno04810	Regulation of actin cytoskeleton
+rno04910	Insulin signaling pathway
+rno04911	Insulin secretion
+rno04912	GnRH signaling pathway
+rno04913	Ovarian steroidogenesis
+rno04914	Progesterone-mediated oocyte maturation
+rno04915	Estrogen signaling pathway
+rno04916	Melanogenesis
+rno04917	Prolactin signaling pathway
+rno04918	Thyroid hormone synthesis
+rno04919	Thyroid hormone signaling pathway
+rno04920	Adipocytokine signaling pathway
+rno04921	Oxytocin signaling pathway
+rno04922	Glucagon signaling pathway
+rno04923	Regulation of lipolysis in adipocytes
+rno04924	Renin secretion
+rno04925	Aldosterone synthesis and secretion
+rno04926	Relaxin signaling pathway
+rno04927	Cortisol synthesis and secretion
+rno04928	Parathyroid hormone synthesis, secretion and action
+rno04930	Type II diabetes mellitus
+rno04931	Insulin resistance
+rno04932	Non-alcoholic fatty liver disease (NAFLD)
+rno04933	AGE-RAGE signaling pathway in diabetic complications
+rno04934	Cushing syndrome
+rno04940	Type I diabetes mellitus
+rno04950	Maturity onset diabetes of the young
+rno04960	Aldosterone-regulated sodium reabsorption
+rno04961	Endocrine and other factor-regulated calcium reabsorption
+rno04962	Vasopressin-regulated water reabsorption
+rno04964	Proximal tubule bicarbonate reclamation
+rno04966	Collecting duct acid secretion
+rno04970	Salivary secretion
+rno04971	Gastric acid secretion
+rno04972	Pancreatic secretion
+rno04973	Carbohydrate digestion and absorption
+rno04974	Protein digestion and absorption
+rno04975	Fat digestion and absorption
+rno04976	Bile secretion
+rno04977	Vitamin digestion and absorption
+rno04978	Mineral absorption
+rno04979	Cholesterol metabolism
+rno05010	Alzheimer disease
+rno05012	Parkinson disease
+rno05014	Amyotrophic lateral sclerosis (ALS)
+rno05016	Huntington disease
+rno05020	Prion diseases
+rno05030	Cocaine addiction
+rno05031	Amphetamine addiction
+rno05032	Morphine addiction
+rno05033	Nicotine addiction
+rno05034	Alcoholism
+rno05100	Bacterial invasion of epithelial cells
+rno05132	Salmonella infection
+rno05133	Pertussis
+rno05134	Legionellosis
+rno05140	Leishmaniasis
+rno05142	Chagas disease (American trypanosomiasis)
+rno05143	African trypanosomiasis
+rno05144	Malaria
+rno05145	Toxoplasmosis
+rno05146	Amoebiasis
+rno05150	Staphylococcus aureus infection
+rno05152	Tuberculosis
+rno05160	Hepatitis C
+rno05161	Hepatitis B
+rno05162	Measles
+rno05163	Human cytomegalovirus infection
+rno05164	Influenza A
+rno05165	Human papillomavirus infection
+rno05166	Human T-cell leukemia virus 1 infection
+rno05167	Kaposi sarcoma-associated herpesvirus infection
+rno05168	Herpes simplex infection
+rno05169	Epstein-Barr virus infection
+rno05170	Human immunodeficiency virus 1 infection
+rno05200	Pathways in cancer
+rno05202	Transcriptional misregulation in cancer
+rno05203	Viral carcinogenesis
+rno05204	Chemical carcinogenesis
+rno05205	Proteoglycans in cancer
+rno05206	MicroRNAs in cancer
+rno05210	Colorectal cancer
+rno05211	Renal cell carcinoma
+rno05212	Pancreatic cancer
+rno05213	Endometrial cancer
+rno05214	Glioma
+rno05215	Prostate cancer
+rno05216	Thyroid cancer
+rno05217	Basal cell carcinoma
+rno05218	Melanoma
+rno05219	Bladder cancer
+rno05220	Chronic myeloid leukemia
+rno05221	Acute myeloid leukemia
+rno05222	Small cell lung cancer
+rno05223	Non-small cell lung cancer
+rno05224	Breast cancer
+rno05225	Hepatocellular carcinoma
+rno05226	Gastric cancer
+rno05230	Central carbon metabolism in cancer
+rno05231	Choline metabolism in cancer
+rno05310	Asthma
+rno05320	Autoimmune thyroid disease
+rno05321	Inflammatory bowel disease (IBD)
+rno05322	Systemic lupus erythematosus
+rno05323	Rheumatoid arthritis
+rno05330	Allograft rejection
+rno05332	Graft-versus-host disease
+rno05340	Primary immunodeficiency
+rno05410	Hypertrophic cardiomyopathy (HCM)
+rno05412	Arrhythmogenic right ventricular cardiomyopathy (ARVC)
+rno05414	Dilated cardiomyopathy (DCM)
+rno05416	Viral myocarditis
+rno05418	Fluid shear stress and atherosclerosis
--- a/tool_data_table_conf.xml.sample	Fri Sep 14 09:52:28 2018 -0400
+++ b/tool_data_table_conf.xml.sample	Fri Nov 09 05:11:46 2018 -0500
@@ -1,5 +1,9 @@
 <tables>
     <!-- Location kegg_pathways file for pathview tool -->
+    <table name="kegg_pathways_list_index" comment_char="#">
+	<columns>value,name,path</columns>
+	<file path="tool-data/kegg_pathways_list_index.loc"/>
+    </table>
     <table name="hsa_pathways" comment_char="#">
         <columns>value,name</columns>
         <file path="tool-data/hsa_pathways.loc" />
@@ -8,4 +12,8 @@
         <columns>value,name</columns>
         <file path="tool-data/mmu_pathways.loc" />
     </table>
+    <table name="rno_pathways" comment_char="#">
+        <columns>value,name</columns>
+        <file path="tool-data/rno_pathways.loc" />
+    </table>
 </tables>