|
0
|
1 <tool id="bg_eden_test" name="EDeN Test" version="0.1">
|
|
|
2 <description></description>
|
|
7
|
3 <macros>
|
|
|
4 <import>eden_macros.xml</import>
|
|
|
5 </macros>
|
|
|
6 <expand macro="requirements" />
|
|
0
|
7 <command>
|
|
|
8 EDeN --action TEST
|
|
2
|
9
|
|
7
|
10 --input_data_file_name $sparse_vector_infile
|
|
|
11 --file_type "SPARSE_VECTOR"
|
|
|
12 --binary_file_type
|
|
|
13
|
|
2
|
14 --model_file_name $model_infile
|
|
0
|
15
|
|
10
|
16 --minimal_output
|
|
7
|
17
|
|
0
|
18 </command>
|
|
|
19 <inputs>
|
|
10
|
20 <param format="eden_sparse_vector" name="sparse_vector_infile" type="data" label="Input File" help="Sparse Vector file, created with EDeN convert." />
|
|
|
21 <param format="txt" name="model_infile" type="data" label="Input Model"
|
|
|
22 help="Created with EDeN Train."/>
|
|
0
|
23
|
|
7
|
24 <expand macro="kernel_type_options" />
|
|
|
25
|
|
|
26 <expand macro="graph_types" />
|
|
|
27
|
|
|
28 <expand macro="normalization_kernel_hash_radius_dist_vertex" />
|
|
|
29
|
|
0
|
30 </inputs>
|
|
|
31 <outputs>
|
|
11
|
32 <data format="tabular" name="prediction" from_work_dir="prediction" label="EDeN on ${on_string}: Prediction"/>
|
|
|
33 <data format="tabular" name="margin" from_work_dir="margin" label="EDeN on ${on_string}: Margin"/>
|
|
0
|
34 </outputs>
|
|
|
35 <tests>
|
|
|
36 <test>
|
|
|
37 </test>
|
|
|
38 </tests>
|
|
|
39 <help>
|
|
|
40
|
|
|
41 .. class:: infomark
|
|
|
42
|
|
|
43 **What it does**
|
|
|
44
|
|
|
45 The linear model is induced using the accelerated stochastic gradient descent technique by Léon Bottou and Yann LeCun.
|
|
|
46 When the target information is 0, a self-training algorithm is used to impute a positive or negative class to the unsupervised instances.
|
|
|
47 If the target information is imbalanced a minority class resampling technique is used to rebalance the training set.
|
|
|
48
|
|
7
|
49 @references@
|
|
0
|
50
|
|
|
51 </help>
|
|
|
52 </tool>
|