Mercurial > repos > proteore > heatmap_visualization
view heatmap_viz.R @ 0:00960579bcd3 draft default tip
planemo upload commit 004439cca3c2fd3b5132eff246d846e5050bfd4f-dirty
| author | proteore |
|---|---|
| date | Tue, 28 Aug 2018 10:37:03 -0400 |
| parents | |
| children |
line wrap: on
line source
#!/usr/bin/Rscript suppressMessages(library('plotly')) suppressMessages(library('heatmaply')) #packageVersion('plotly') get_args <- function(){ ## Collect arguments args <- commandArgs(TRUE) ## Default setting when no arguments passed if(length(args) < 1) { args <- c("--help") } ## Help section if("--help" %in% args) { cat("Pathview R script Arguments: --help Print this test --input path of the input file (must contains a colum of uniprot and/or geneID accession number) --output Output file --type type of output file, could be html, pdf, jpg or png --cols Columns to use for heatmap, exemple : '3:8' to use columns from the third to the 8th --row_names Column which contains row names --header True or False --col_text_angle Angle of columns label ; from -90 to 90 degres Example: ./heatmap_viz.R --input='dat.nucl.norm.imputed.tsv' --output='heatmap.html' --cols='3:8' --row_names='2' --header=TRUE --col_text_angle=0 \n\n") q(save="no") } #save(args,file="/home/dchristiany/proteore_project/ProteoRE/tools/pathview/args.Rda") #load("/home/dchristiany/proteore_project/ProteoRE/tools/pathview/args.Rda") parseArgs <- function(x) strsplit(sub("^--", "", x), "=") argsDF <- as.data.frame(do.call("rbind", parseArgs(args))) args <- as.list(as.character(argsDF$V2)) names(args) <- argsDF$V1 return(args) } read_file <- function(path,header){ file <- try(read.table(path,header=header, sep="\t",stringsAsFactors = FALSE, quote=""),silent=TRUE) if (inherits(file,"try-error")){ stop("File not found !") }else{ return(file) } } str2bool <- function(x){ if (any(is.element(c("t","true"),tolower(x)))){ return (TRUE) }else if (any(is.element(c("f","false"),tolower(x)))){ return (FALSE) }else{ return(NULL) } } args <- get_args() header=str2bool(args$header) output <- rapply(strsplit(args$output,"\\."),c) #remove extension output <- paste(output[1:length(output)-1],collapse=".") output <- paste(output,args$type,sep=".") first_col=as.numeric(substr(args$cols,1,1)) last_col=as.numeric(substr(args$cols,3,3)) ###save and load args in rda file for testing #save(args,file="/home/dchristiany/proteore_project/ProteoRE/tools/heatmap_viz/args.Rda") #load("/home/dchristiany/proteore_project/ProteoRE/tools/heatmap_viz/args.Rda") uto <- read_file(args$input,header = header) uto_light <- uto[,first_col:last_col] rownames(uto_light) <- uto[,as.numeric(args$row_names)] colnames(uto_light) <- sapply(colnames(uto_light),function(x) gsub("iBAQ_","",x),USE.NAMES = FALSE) if (header) { heatmaply(uto_light, file=output, margins=c(100,50,NA,0), plot_method="plotly", labRow = rownames(uto_light), labCol = names(uto_light), grid_gap = 0,cexCol = 1, column_text_angle = as.numeric(args$col_text_angle), width = 1000, height=1000, colors = c('blue','green','yellow','red')) }else{ names(uto_light) <-c(first_col:last_col) heatmaply(uto_light, file=output, margins=c(100,50,NA,0), plot_method="plotly", labRow = rownames(uto_light), grid_gap = 0,cexCol = 1, column_text_angle = as.numeric(args$col_text_angle), width = 1000, height=1000, colors = c('blue','green','yellow','red')) } #write.table(uto_light, file = "uto_light.tsv",sep="\t",row.names = FALSE) ####heatmaply simulateExprData <- function(n, n0, p, rho0, rho1){ # n: total number of subjects # n0: number of subjects with exposure 0 # n1: number of subjects with exposure 1 # p: number of genes # rho0: rho between Z_i and Z_j for subjects with exposure 0 # rho1: rho between Z_i and Z_j for subjects with exposure 1 # Simulate gene expression values according to exposure 0 or 1, # according to a centered multivariate normal distribution with # covariance between Z_i and Z_j being rho^|i-j| n1 <- n - n0 times <- 1:p H <- abs(outer(times, times, "-")) V0 <- rho0^H V1 <- rho1^H # rows are people, columns are genes genes0 <- MASS::mvrnorm(n = n0, mu = rep(0,p), Sigma = V0) genes1 <- MASS::mvrnorm(n = n1, mu = rep(0,p), Sigma = V1) genes <- rbind(genes0,genes1) return(genes) } #genes <- simulateExprData(n = 50, n0 = 25, p = 100, rho0 = 0.01, rho1 = 0.95) #heatmaply(genes, k_row = 2, k_col = 2) #heatmaply(cor(genes), k_row = 2, k_col = 2)
