Mercurial > repos > proteore > heatmap_visualization
diff heatmap_viz.R @ 0:00960579bcd3 draft default tip
planemo upload commit 004439cca3c2fd3b5132eff246d846e5050bfd4f-dirty
| author | proteore |
|---|---|
| date | Tue, 28 Aug 2018 10:37:03 -0400 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/heatmap_viz.R Tue Aug 28 10:37:03 2018 -0400 @@ -0,0 +1,133 @@ +#!/usr/bin/Rscript + +suppressMessages(library('plotly')) +suppressMessages(library('heatmaply')) + +#packageVersion('plotly') + +get_args <- function(){ + + ## Collect arguments + args <- commandArgs(TRUE) + + ## Default setting when no arguments passed + if(length(args) < 1) { + args <- c("--help") + } + + ## Help section + if("--help" %in% args) { + cat("Pathview R script + Arguments: + --help Print this test + --input path of the input file (must contains a colum of uniprot and/or geneID accession number) + --output Output file + --type type of output file, could be html, pdf, jpg or png + --cols Columns to use for heatmap, exemple : '3:8' to use columns from the third to the 8th + --row_names Column which contains row names + --header True or False + --col_text_angle Angle of columns label ; from -90 to 90 degres + + Example: + ./heatmap_viz.R --input='dat.nucl.norm.imputed.tsv' --output='heatmap.html' --cols='3:8' --row_names='2' --header=TRUE --col_text_angle=0 \n\n") + + q(save="no") + } + + #save(args,file="/home/dchristiany/proteore_project/ProteoRE/tools/pathview/args.Rda") + #load("/home/dchristiany/proteore_project/ProteoRE/tools/pathview/args.Rda") + parseArgs <- function(x) strsplit(sub("^--", "", x), "=") + argsDF <- as.data.frame(do.call("rbind", parseArgs(args))) + args <- as.list(as.character(argsDF$V2)) + names(args) <- argsDF$V1 + + return(args) +} + +read_file <- function(path,header){ + file <- try(read.table(path,header=header, sep="\t",stringsAsFactors = FALSE, quote=""),silent=TRUE) + if (inherits(file,"try-error")){ + stop("File not found !") + }else{ + return(file) + } +} + +str2bool <- function(x){ + if (any(is.element(c("t","true"),tolower(x)))){ + return (TRUE) + }else if (any(is.element(c("f","false"),tolower(x)))){ + return (FALSE) + }else{ + return(NULL) + } +} + +args <- get_args() +header=str2bool(args$header) +output <- rapply(strsplit(args$output,"\\."),c) #remove extension +output <- paste(output[1:length(output)-1],collapse=".") +output <- paste(output,args$type,sep=".") +first_col=as.numeric(substr(args$cols,1,1)) +last_col=as.numeric(substr(args$cols,3,3)) + +###save and load args in rda file for testing +#save(args,file="/home/dchristiany/proteore_project/ProteoRE/tools/heatmap_viz/args.Rda") +#load("/home/dchristiany/proteore_project/ProteoRE/tools/heatmap_viz/args.Rda") + + +uto <- read_file(args$input,header = header) +uto_light <- uto[,first_col:last_col] +rownames(uto_light) <- uto[,as.numeric(args$row_names)] +colnames(uto_light) <- sapply(colnames(uto_light),function(x) gsub("iBAQ_","",x),USE.NAMES = FALSE) + +if (header) { + heatmaply(uto_light, file=output, margins=c(100,50,NA,0), plot_method="plotly", labRow = rownames(uto_light), labCol = names(uto_light), + grid_gap = 0,cexCol = 1, column_text_angle = as.numeric(args$col_text_angle), width = 1000, height=1000, colors = c('blue','green','yellow','red')) +}else{ + names(uto_light) <-c(first_col:last_col) + heatmaply(uto_light, file=output, margins=c(100,50,NA,0), plot_method="plotly", labRow = rownames(uto_light), + grid_gap = 0,cexCol = 1, column_text_angle = as.numeric(args$col_text_angle), width = 1000, height=1000, colors = c('blue','green','yellow','red')) +} + + +#write.table(uto_light, file = "uto_light.tsv",sep="\t",row.names = FALSE) + +####heatmaply + +simulateExprData <- function(n, n0, p, rho0, rho1){ + # n: total number of subjects + # n0: number of subjects with exposure 0 + # n1: number of subjects with exposure 1 + # p: number of genes + # rho0: rho between Z_i and Z_j for subjects with exposure 0 + # rho1: rho between Z_i and Z_j for subjects with exposure 1 + + # Simulate gene expression values according to exposure 0 or 1, + # according to a centered multivariate normal distribution with + # covariance between Z_i and Z_j being rho^|i-j| + n1 <- n - n0 + times <- 1:p + H <- abs(outer(times, times, "-")) + V0 <- rho0^H + V1 <- rho1^H + + # rows are people, columns are genes + genes0 <- MASS::mvrnorm(n = n0, mu = rep(0,p), Sigma = V0) + genes1 <- MASS::mvrnorm(n = n1, mu = rep(0,p), Sigma = V1) + genes <- rbind(genes0,genes1) + return(genes) +} + +#genes <- simulateExprData(n = 50, n0 = 25, p = 100, rho0 = 0.01, rho1 = 0.95) + +#heatmaply(genes, k_row = 2, k_col = 2) + +#heatmaply(cor(genes), k_row = 2, k_col = 2) + + + + + + +
