Mercurial > repos > imgteam > imagej2_noise
view imagej2_noise.xml @ 0:f4b47ff93e33 draft default tip
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/image_processing/imagej2 commit b08f0e6d1546caaf627b21f8c94044285d5d5b9c-dirty"
author | imgteam |
---|---|
date | Tue, 17 Sep 2019 16:55:08 -0400 |
parents | |
children |
line wrap: on
line source
<?xml version='1.0' encoding='UTF-8'?> <tool id="imagej2_noise" name="Add or remove noise" version="@WRAPPER_VERSION@.0"> <description></description> <macros> <import>imagej2_macros.xml</import> <xml name="insertion_select"> <param name="insertion" type="select" label="Insertion"> <option value="additive" selected="True">Additive</option> <option value="multiplicative">Multiplicative</option> </param> </xml> </macros> <expand macro="fiji_requirements" /> <command> <![CDATA[ python $__tool_directory__/imagej2_noise.py --input "$input" --input_datatype $input.ext --noise $noise_cond.noise #if $noise_cond.noise == 'add_specified_noise': --standard_deviation $noise_cond.standard_deviation #else if $noise_cond.noise == 'remove_outliers': --radius $noise_cond.radius --threshold $noise_cond.threshold --which_outliers $noise_cond.which_outliers #else if $noise_cond.noise == 'randomj': --randomj $noise_cond.randomj_cond.randomj #if $noise_cond.randomj_cond.randomj == 'randomj_binomial': --trials $noise_cond.randomj_cond.trials --probability $noise_cond.randomj_cond.probability #else if $noise_cond.randomj_cond.randomj == 'randomj_exponential': --lammbda $noise_cond.randomj_cond.lammbda #else if $noise_cond.randomj_cond.randomj == 'randomj_gamma': --order $noise_cond.randomj_cond.order #else if $noise_cond.randomj_cond.randomj == 'randomj_gaussian': --mean $noise_cond.randomj_cond.mean --sigma $noise_cond.randomj_cond.sigma #else if $noise_cond.randomj_cond.randomj == 'randomj_poisson': --mean $noise_cond.randomj_cond.mean #else if $noise_cond.randomj_cond.randomj == 'randomj_uniform': --min $noise_cond.randomj_cond.min --max $noise_cond.randomj_cond.max #end if --insertion $noise_cond.randomj_cond.insertion #end if --jython_script $__tool_directory__/imagej2_noise_jython_script.py --output "$output" ]]> </command> <inputs> <param format="bmp,eps,gif,jpg,pcx,pgm,png,psd,tiff" name="input" type="data" label="Select image"/> <conditional name="noise_cond"> <param name="noise" type="select" label="Noise"> <option value="add_noise" selected="True">Add Random Noise</option> <option value="add_specified_noise">Add Specified Noise</option> <option value="salt_and_pepper">Salt and Pepper</option> <option value="despeckle">Despeckle</option> <option value="remove_outliers">Remove Outliers</option> <option value="remove_nans">Remove NaNs</option> <option value="rof_denoise">ROF Denoise</option> <option value="randomj">RandomJ</option> </param> <when value="add_noise" /> <when value="add_specified_noise"> <param name="standard_deviation" type="float" value="25.0" label="Standard deviation" help="Floating point number"/> </when> <when value="salt_and_pepper" /> <when value="despeckle" /> <when value="remove_outliers"> <param name="radius" type="float" value="2.0" label="Radius" help="pixels"/> <param name="threshold" type="float" value="50.0" label="Threshold"/> <param name="which_outliers" type="select" label="Which Outliers"> <option value="bright" selected="True">Bright</option> <option value="dark">Dark</option> </param> </when> <when value="remove_nans" /> <when value="rof_denoise" /> <when value="randomj"> <conditional name="randomj_cond"> <param name="randomj" type="select" label="RandomJ"> <option value="randomj_binomial" selected="True">RandomJ Binomial</option> <option value="randomj_exponential">RandomJ Exponential</option> <option value="randomj_gamma">RandomJ Gamma</option> <option value="randomj_gaussian">RandomJ Gaussian</option> <option value="randomj_poisson">RandomJ Poisson</option> <option value="randomj_uniform">RandomJ Uniform</option> </param> <when value="randomj_binomial"> <param name="trials" type="float" value="1.0" label="Trials"/> <param name="probability" type="float" value="0.5" label="Probability"/> <expand macro="insertion_select" /> </when> <when value="randomj_exponential"> <param name="lammbda" type="float" value="0.5" label="Lambda"/> <expand macro="insertion_select" /> </when> <when value="randomj_gamma"> <param name="order" type="integer" value="1" label="Order"/> <expand macro="insertion_select" /> </when> <when value="randomj_gaussian"> <param name="mean" type="float" value="0.0" label="Mean"/> <param name="sigma" type="float" value="1.0" label="Sigma"/> <expand macro="insertion_select" /> </when> <when value="randomj_poisson"> <param name="mean" type="float" value="1.0" label="Mean"/> <expand macro="insertion_select" /> </when> <when value="randomj_uniform"> <param name="min" type="float" value="0.0" label="Min"/> <param name="max" type="float" value="1.0" label="Max"/> <expand macro="insertion_select" /> </when> </conditional> </when> </conditional> </inputs> <outputs> <data name="output" format_source="input" label="${tool.name} on ${on_string}: ${noise_cond.noise.replace( '_', ' ' )}" /> </outputs> <tests> <test> <param name="input" value="blobs.gif" /> <param name="input_datatype" value="gif" /> <param name="noise" value="add_specified_noise" /> <output name="output" file="add_specified_noise.gif" /> </test> <test> <param name="input" value="blobs.gif" /> <param name="input_datatype" value="gif" /> <param name="noise" value="despeckle" /> <output name="output" file="despeckle.gif" /> </test> <test> <param name="input" value="blobs.gif" /> <param name="input_datatype" value="gif" /> <param name="noise" value="remove_outliers" /> <param name="radius" value="2.0" /> <param name="threshold" value="50.0" /> <param name="which_outliers" value="bright" /> <output name="output" file="remove_outliers.gif" /> </test> </tests> <help> **What it does** <![CDATA[ Adds noise to or removes noise from images. - **Add Random Noise** - Adds random noise to the image. The noise is Gaussian (normally) distributed with a mean of zero and standard deviation of 25. - **Add Specified Noise** - Adds Gaussian noise with a mean of zero and a chosen standard deviation. - **Salt and Pepper** - Adds salt and pepper noise to the image by randomly replacing 2.5% of the pixels with black pixels and 2.5% with white pixels. This command only works with 8-bit images. - **Despeckle** - Replaces each pixel with the median value in its 3 × 3 neighborhood. This is a time consuming operation because for each pixel, the nine pixels in the 3 × 3 neighborhood must be sorted and the center pixel replaced with the median value (the fifth). - **Remove Outliers** - Replaces a pixel by the median of the pixels in the surrounding if it deviates from the median by more than a certain value (the threshold). - **Remove NaNs** - Replaces NaN (Not-a-Number) pixels in 32-bit images by the median of the neighbors inside the circular kernel area defined by Radius. It does not remove patches of NaNs larger than the kernel size, however. - **RandonJ Binomial** - Contaminates image with random numbers generated using a binomial random variable - **RandonJ Exponential** - Contaminates image with random numbers generated using an exponential random variable. - **RandonJ Gamma** - Contaminates image with random numbers generated using a gamma random variable. - **RandonJ Gaussian** - Contaminates image with random numbers generated using a Gaussian random variable. - **RandonJ Poisson** - Contaminates image with random numbers generated using a Poisson random variable. - **RandonJ Uniform** - Contaminates image with random numbers generated using a uniform random variable. ]]> </help> <expand macro="fiji_headless_citations" /> </tool>