Mercurial > repos > greg > yolo
view yolo.xml @ 21:916208f6745d draft
Uploaded
author | greg |
---|---|
date | Wed, 18 Oct 2017 13:21:33 -0400 |
parents | c834e636fd66 |
children | 87c8a4b6020d |
line wrap: on
line source
<tool id="yolo" name="YOLO" version="1.0"> <description>real-time object detection</description> <requirements> <requirement type="package" version="1.0">darknet</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ mkdir output_shape_confidence_dir && mkdir input_dir && mkdir output_png_dir && cp -R /home/greg/_conda/envs/__darknet@1.0/bin/* . #for $i in $input: #set input_filename = $i.file_name #set full_name = $i.name #set head = $full_name.split('.')[0] #set output_filename_image = '%s_predictions.png' % $head #set output_filename_shape_confidence = '%s_shape_detection_confidence.tabular' % $head && ln -s $input_filename input_dir/$full_name && darknet detect cfg/yolo.cfg yolo.weights 'input_dir/$full_name' -thresh $thresh -f jpg > output_shape_confidence_dir/$output_filename_shape_confidence && mv ./predictions.jpg output_png_dir/$output_filename_image #end for ]]></command> <inputs> <param name="input" format="jpg" type="data_collection" collection_type="list" label="Collection of image files" /> <param name="thresh" type="float" value="0.25" label="Object detection threshold" /> <param name="output_shape_confidence" type="select" display="radio" label="Output shape detection confidence levels?"> <option value="yes" selected="true">Yes</option> <option value="no">No</option> </param> </inputs> <outputs> <collection name="output_shape_confidence" type="list" label="${tool.name} (shape detection confidence) on ${on_string}"> <discover_datasets pattern="__name__" directory="output_shape_confidence_dir" format="tabular" /> <filter>output_shape_confidence == 'yes'</filter> </collection> <collection name="output_shape" type="list" label="${tool.name} (shapes) on ${on_string}"> <discover_datasets pattern="__name__" directory="output_png_dir" format="png" /> </collection> </outputs> <tests> <test> </test> </tests> <help> **What it does** You only look once (YOLO) is a state-of-the-art, real-time object detection system. ----- **Options** </help> <citations> <citation type="bibtex"> @misc{darknet13, author = {Joseph Redmon}, title = {Darknet: Open Source Neural Networks in C}, url = {http://pjreddie.com/darknet/}, year = {2013--2016}} </citation> <citation type="bibtex"> @article{redmon2016yolo9000, title={YOLO9000: Better, Faster, Stronger}, author={Redmon, Joseph and Farhadi, Ali}, journal={arXiv preprint arXiv:1612.08242}, year={2016}} </citation> </citations> </tool>