0
|
1 <tool id="yolo" name="YOLO" version="1.0">
|
|
2 <description>real-time object detection</description>
|
|
3 <requirements>
|
|
4 <requirement type="package" version="1.0">darknet</requirement>
|
|
5 </requirements>
|
|
6 <command detect_errors="exit_code"><![CDATA[
|
|
7 darknet detect cfg/yolo.cfg yolo.weights '$input' 2> output.log
|
|
8 && mv ./predictions.png $output
|
|
9 ]]></command>
|
|
10 <inputs>
|
|
11 <param name="input" type="data" format="jpg" label="Select input image" />
|
|
12 </inputs>
|
|
13 <outputs>
|
|
14 <data name="output_log" format="txt" label="${tool.name} darknet output log) on ${on_string}" />
|
|
15 <data name="output" format="png"/>
|
|
16 </outputs>
|
|
17 <tests>
|
|
18 <test>
|
|
19 </test>
|
|
20 </tests>
|
|
21 <help>
|
|
22 **What it does**
|
|
23
|
|
24 You only look once (YOLO) is a state-of-the-art, real-time object detection system.
|
|
25
|
|
26 -----
|
|
27
|
|
28 **Options**
|
|
29
|
|
30 </help>
|
|
31 <citations>
|
|
32 <citation type="bibtex">
|
|
33 @misc{darknet13,
|
|
34 author = {Joseph Redmon},
|
|
35 title = {Darknet: Open Source Neural Networks in C},
|
|
36 url = {http://pjreddie.com/darknet/},
|
|
37 year = {2013--2016}}
|
|
38 </citation>
|
|
39 <citation type="bibtex">
|
|
40 @article{redmon2016yolo9000,
|
|
41 title={YOLO9000: Better, Faster, Stronger},
|
|
42 author={Redmon, Joseph and Farhadi, Ali},
|
|
43 journal={arXiv preprint arXiv:1612.08242},
|
|
44 year={2016}}
|
|
45 </citation>
|
|
46 </citations>
|
|
47 </tool>
|