Mercurial > repos > greg > linear_fascile_evaluation
changeset 7:eb03934e044f draft
Uploaded
author | greg |
---|---|
date | Wed, 29 Nov 2017 16:40:08 -0500 |
parents | 8dba8c7c1f53 |
children | 310175bde319 |
files | linear_fascile_evaluation.py |
diffstat | 1 files changed, 0 insertions(+), 79 deletions(-) [+] |
line wrap: on
line diff
--- a/linear_fascile_evaluation.py Wed Nov 29 16:39:58 2017 -0500 +++ b/linear_fascile_evaluation.py Wed Nov 29 16:40:08 2017 -0500 @@ -20,10 +20,6 @@ parser = argparse.ArgumentParser() parser.add_argument('--input', dest='input', help='Track Visualization Header dataset') parser.add_argument('--output_life_candidates', dest='output_life_candidates', help='Output life candidates') -parser.add_argument('--output_life_optimized', dest='output_life_optimized', help='Output life optimized streamlines') -parser.add_argument('--output_beta_histogram', dest='output_beta_histogram', help='Output beta histogram') -parser.add_argument('--output_error_histograms', dest='output_error_histograms', help='Output error histograms') -parser.add_argument('--output_spatial_errors', dest='output_spatial_errors', help='Output spatial errors') args = parser.parse_args() @@ -54,78 +50,3 @@ fvtk.add(ren, vol_actor2) fvtk.record(ren, n_frames=1, out_path="life_candidates.png", size=(800, 800)) shutil.move("life_candidates.png", args.output_life_candidates) -# Initialize a LiFE model. -fiber_model = life.FiberModel(gtab) -# Fit the model, producing a FiberFit class instance, -# that stores the data, as well as the results of the -# fitting procedure. -fiber_fit = fiber_model.fit(data, candidate_sl, affine=np.eye(4)) -fig, ax = plt.subplots(1) -ax.hist(fiber_fit.beta, bins=100, histtype='step') -ax.set_xlabel('Fiber weights') -ax.set_ylabel('# fibers') -fig.savefig("beta_histogram.png") -shutil.move("beta_histogram.png", args.output_beta_histogram) -# Filter out these redundant streamlines and -# generate an optimized group of streamlines. -optimized_sl = list(np.array(candidate_sl)[np.where(fiber_fit.beta > 0)[0]]) -ren = fvtk.ren() -fvtk.add(ren, fvtk.streamtube(optimized_sl, line_colors(optimized_sl))) -fvtk.add(ren, cc_ROI_actor) -fvtk.add(ren, vol_actor) -fvtk.record(ren, n_frames=1, out_path="optimized.png", size=(800, 800)) -shutil.move("optimized.png", args.output_life_optimized) -model_predict = fiber_fit.predict() -# Focus on the error in prediction of the diffusion-weighted -# data, and calculate the root of the mean squared error. -model_error = model_predict - fiber_fit.data -model_rmse = np.sqrt(np.mean(model_error[:, 10:] ** 2, -1)) -# Calculate another error term by assuming that the weight for each streamline -# is equal to zero. This produces the naive prediction of the mean of the -# signal in each voxel. -beta_baseline = np.zeros(fiber_fit.beta.shape[0]) -pred_weighted = np.reshape(opt.spdot(fiber_fit.life_matrix, beta_baseline), (fiber_fit.vox_coords.shape[0], np.sum(~gtab.b0s_mask))) -mean_pred = np.empty((fiber_fit.vox_coords.shape[0], gtab.bvals.shape[0])) -S0 = fiber_fit.b0_signal -# Since the fitting is done in the demeaned S/S0 domain, -# add back the mean and then multiply by S0 in every voxel: -mean_pred[..., gtab.b0s_mask] = S0[:, None] -mean_pred[..., ~gtab.b0s_mask] = (pred_weighted + fiber_fit.mean_signal[:, None]) * S0[:, None] -mean_error = mean_pred - fiber_fit.data -mean_rmse = np.sqrt(np.mean(mean_error ** 2, -1)) -# Compare the overall distribution of errors -# between these two alternative models of the ROI. -fig, ax = plt.subplots(1) -ax.hist(mean_rmse - model_rmse, bins=100, histtype='step') -ax.text(0.2, 0.9, 'Median RMSE, mean model: %.2f' % np.median(mean_rmse), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) -ax.text(0.2, 0.8, 'Median RMSE, LiFE: %.2f' % np.median(model_rmse), horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) -ax.set_xlabel('RMS Error') -ax.set_ylabel('# voxels') -fig.savefig("error_histograms.png") -shutil.move("error_histograms.png", args.output_error_histograms) -# Show the spatial distribution of the two error terms, -# and of the improvement with the model fit: -vol_model = np.ones(data.shape[:3]) * np.nan -vol_model[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = model_rmse -vol_mean = np.ones(data.shape[:3]) * np.nan -vol_mean[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = mean_rmse -vol_improve = np.ones(data.shape[:3]) * np.nan -vol_improve[fiber_fit.vox_coords[:, 0], fiber_fit.vox_coords[:, 1], fiber_fit.vox_coords[:, 2]] = mean_rmse - model_rmse -sl_idx = 49 -fig = plt.figure() -fig.subplots_adjust(left=0.05, right=0.95) -ax = AxesGrid(fig, 111, nrows_ncols=(1, 3), label_mode="1", share_all=True, cbar_location="top", cbar_mode="each", cbar_size="10%", cbar_pad="5%") -ax[0].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone) -im = ax[0].matshow(np.rot90(vol_model[sl_idx, :, :]), cmap=matplotlib.cm.hot) -ax.cbar_axes[0].colorbar(im) -ax[1].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone) -im = ax[1].matshow(np.rot90(vol_mean[sl_idx, :, :]), cmap=matplotlib.cm.hot) -ax.cbar_axes[1].colorbar(im) -ax[2].matshow(np.rot90(t1_data[sl_idx, :, :]), cmap=matplotlib.cm.bone) -im = ax[2].matshow(np.rot90(vol_improve[sl_idx, :, :]), cmap=matplotlib.cm.RdBu) -ax.cbar_axes[2].colorbar(im) -for lax in ax: - lax.set_xticks([]) - lax.set_yticks([]) -fig.savefig("spatial_errors.png") -shutil.move("spatial_errors.png", args.output_spatial_errors)