Mercurial > repos > greg > ks_distribution
changeset 7:22cae2172406 draft
Uploaded
author | greg |
---|---|
date | Tue, 06 Jun 2017 09:02:08 -0400 |
parents | 9831319a19fb |
children | 1650842a90ba |
files | ks_distribution.R test-data/components.tabular test-data/kaks_input1.tabular test-data/rates.tabular |
diffstat | 4 files changed, 52 insertions(+), 121 deletions(-) [+] |
line wrap: on
line diff
--- a/ks_distribution.R Wed May 31 12:14:32 2017 -0400 +++ b/ks_distribution.R Tue Jun 06 09:02:08 2017 -0400 @@ -64,7 +64,7 @@ return(results) } -plot_ks<-function(kaks_input, output, pi, mu, var, max_ks) +plot_ks<-function(kaks_input, output, pi, mu, var) { # Start PDF device driver to save charts to output. pdf(file=output, bg="white") @@ -72,8 +72,8 @@ max_ks <- max(kaks$Ks, na.rm=TRUE) # Change bin width max_bin_range <- as.integer(max_ks / 0.05) - bin <- 0.05 * seq(0, max_bin_range) - kaks <- kaks[kaks$Ks<max_ks,]; + bin <- 0.05 * seq(0, (max_bin_range + 1 )) + kaks <- kaks[kaks$Ks<max_ks,] h.kst <- hist(kaks$Ks, breaks=bin, plot=F) nc <- h.kst$counts vx <- h.kst$mids @@ -81,11 +81,11 @@ # Set margin for plot bottom, left top, right. par(mai=c(0.5, 0.5, 0, 0)) # Plot dimension in inches. - par(pin=c(2.5, 2.5)) - g <- calculate_fitted_density(pi, mu, var) - h <- ntot * 2.5 / sum(g) - vx <- seq(1, 100) * 0.02 - ymax <- max(nc) + 5 + par(pin=c(3.0, 3.0)) + g <- calculate_fitted_density(pi, mu, var, max_ks) + h <- ntot * 1.5 / sum(g) + vx <- seq(1, 100) * (max_ks / 100) + ymax <- max(nc) barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0, max_ks), ylim=c(0, ymax), col="lightpink1", border="lightpink3") # Add x-axis. axis(1) @@ -96,13 +96,13 @@ } } -calculate_fitted_density <- function(pi, mu, var) +calculate_fitted_density <- function(pi, mu, var, max_ks) { comp <- length(pi) var <- var/mu^2 mu <- log(mu) # Calculate lognormal density. - vx <- seq(1, 100) * 0.02 + vx <- seq(1, 100) * (max_ks / 100) fx <- matrix(0, 100, comp) for (i in 1:100) { @@ -122,9 +122,42 @@ # Set pi, mu, var. items <- get_pi_mu_var(components_data, num_components) -pi <- items[1:3] -mu <- items[4:6] -var <- items[7:9] +if (num_components == 1) +{ + pi <- items[1] + mu <- items[2] + var <- items[3] +} +if (num_components == 2) +{ + pi <- items[1:2] + mu <- items[3:4] + var <- items[5:6] +} +if (num_components == 3) +{ + pi <- items[1:3] + mu <- items[4:6] + var <- items[7:9] +} +if (num_components == 4) +{ + pi <- items[1:4] + mu <- items[5:8] + var <- items[9:12] +} +if (num_components == 5) +{ + pi <- items[1:5] + mu <- items[6:10] + var <- items[11:15] +} +if (num_components == 6) +{ + pi <- items[1:6] + mu <- items[7:12] + var <- items[13:18] +} # Plot the output. -plot_ks(opt$kaks_input, opt$output, pi, mu, var, max_ks) +plot_ks(opt$kaks_input, opt$output, pi, mu, var)
--- a/test-data/components.tabular Wed May 31 12:14:32 2017 -0400 +++ b/test-data/components.tabular Tue Jun 06 09:02:08 2017 -0400 @@ -1,7 +1,2 @@ species n number_comp lnL AIC BIC mean variance porportion -species1 1160 1 -1404.9900 2813.98 2824.09 0.4426 0.1293 1.00 -species1 1160 2 -1353.6550 2717.31 2742.59 0.7376 0.1672 0.61 - 0.2000 0.0069 0.39 -species1 1160 3 -1323.7480 2663.50 2703.94 0.1214 0.0002 0.10 - 0.7759 0.1663 0.57 - 0.2428 0.0070 0.33 +species1 3 1 -3.4750 6.95 6.95 3.1183 5.7732 1.00
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/kaks_input1.tabular Tue Jun 06 09:02:08 2017 -0400 @@ -0,0 +1,4 @@ +SEQ1 SEQ2 Ka Ks Ka\Ks +contig_241; contig_241 1.5312 7.1619 0.2138 +contig_300 contig_300; 0.8653 3.7872 0.2285 +contig_586 contig_586; 1.7791 1.1181 1.5912
--- a/test-data/rates.tabular Wed May 31 12:14:32 2017 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,101 +0,0 @@ -SEQ1 SEQ2 Ka Ks Ka\Ks -species1_10079 species1_10080 0.1194 0.9782 0.1221 -species1_10818 species1_10817 0.0194 0.9541 0.0203 -species1_4505 species1_4506 0.0379 0.2411 0.1571 -species1_2890 species1_2889 0.0212 0.8520 0.0249 -species1_3386 species1_3385 0.0002 0.1698 0.0010 -species1_2266 species1_2265 0.0881 0.1515 0.5814 -species1_7052 species1_7051 0.0514 0.8172 0.0630 -species1_3374 species1_3373 0.0034 0.4496 0.0075 -species1_688 species1_687 0.1420 0.2970 0.4782 -species1_10669 species1_10670 0.0003 0.3216 0.0010 -species1_9810 species1_9809 0.1490 0.7782 0.1914 -species1_11440 species1_11439 0.0083 0.2177 0.0380 -species1_2713 species1_2714 0.1227 0.2133 0.5755 -species1_4698 species1_4697 0.1021 0.2207 0.4624 -species1_10939 species1_10940 0.0861 0.7844 0.1098 -species1_22 species1_21 0.1368 0.2515 0.5437 -species1_7149 species1_7150 0.0817 0.9899 0.0825 -species1_5139 species1_5140 0.1167 0.2669 0.4373 -species1_3430 species1_3429 0.0803 0.9931 0.0808 -species1_10208 species1_10207 0.0764 0.1098 0.6957 -species1_8410 species1_8409 0.0165 0.8114 0.0204 -species1_2452 species1_2451 0.0629 0.4523 0.1391 -species1_289 species1_290 0.0560 0.1590 0.3526 -species1_10028 species1_10027 0.0927 1.3078 0.0708 -species1_8242 species1_8241 0.0037 0.1390 0.0264 -species1_5661 species1_5662 0.2040 0.5982 0.3410 -species1_85 species1_86 0.0391 0.1012 0.3866 -species1_1660 species1_1659 0.0408 0.3674 0.1111 -species1_616 species1_615 0.0078 0.1315 0.0595 -species1_8043 species1_8044 0.0637 0.3891 0.1637 -species1_1465 species1_1466 0.1186 0.1725 0.6876 -species1_7761 species1_7762 0.2544 0.3513 0.7242 -species1_299 species1_300 0.1407 0.5325 0.2643 -species1_3563 species1_3564 0.0732 0.1679 0.4360 -species1_4847 species1_4848 0.4327 0.6173 0.7009 -species1_3344 species1_3343 0.0642 0.5842 0.1098 -species1_262 species1_261 0.1786 1.5710 0.1137 -species1_3725 species1_3726 0.1883 0.8863 0.2125 -species1_779 species1_780 0.0725 0.2543 0.2849 -species1_1818 species1_1817 0.0681 0.2312 0.2946 -species1_11023 species1_11024 0.1603 0.6655 0.2408 -species1_9653 species1_9654 0.0007 0.7308 0.0010 -species1_6805 species1_6806 0.1090 0.9048 0.1205 -species1_10221 species1_10222 0.0522 0.1314 0.3975 -species1_6011 species1_6012 0.0099 0.9179 0.0108 -species1_5208 species1_5207 0.0931 0.6077 0.1532 -species1_10692 species1_10691 0.0537 0.1868 0.2876 -species1_10036 species1_10035 0.2450 0.4664 0.5254 -species1_1382 species1_1381 0.0682 0.1241 0.5495 -species1_1350 species1_1349 0.0129 0.4414 0.0293 -species1_6889 species1_6890 0.0195 0.7789 0.0251 -species1_4426 species1_4425 0.0399 0.3048 0.1309 -species1_7405 species1_7406 0.0443 1.3004 0.0341 -species1_11014 species1_11013 0.0643 0.9027 0.0712 -species1_8683 species1_8684 0.1321 0.6680 0.1977 -species1_5287 species1_5288 0.0882 0.3480 0.2534 -species1_11671 species1_11672 0.1101 0.2895 0.3802 -species1_551 species1_552 0.0165 0.2045 0.0809 -species1_3396 species1_3395 0.3309 1.6105 0.2055 -species1_5398 species1_5397 0.0004 0.4077 0.0010 -species1_7959 species1_7960 0.0498 0.4343 0.1146 -species1_11030 species1_11029 0.0999 0.2613 0.3825 -species1_10250 species1_10249 0.0486 0.1441 0.3372 -species1_6254 species1_6253 0.6399 0.8894 0.7195 -species1_5438 species1_5437 0.0613 0.2224 0.2757 -species1_5728 species1_5727 0.0788 0.1384 0.5697 -species1_8814 species1_8813 0.1076 1.8253 0.0590 -species1_6351 species1_6352 0.2963 0.8001 0.3704 -species1_11253 species1_11254 0.1359 0.7304 0.1860 -species1_11373 species1_11374 0.0924 0.1261 0.7325 -species1_4903 species1_4904 0.1021 1.3915 0.0734 -species1_4326 species1_4325 0.0275 0.1845 0.1492 -species1_9047 species1_9048 0.0648 2.3728 0.0273 -species1_7487 species1_7488 0.0488 0.2406 0.2029 -species1_1125 species1_1126 0.0813 0.3900 0.2085 -species1_9140 species1_9139 0.1643 0.7126 0.2306 -species1_3355 species1_3356 0.0262 0.9844 0.0266 -species1_7068 species1_7067 0.0368 0.1055 0.3492 -species1_8341 species1_8342 0.0356 0.6112 0.0583 -species1_4871 species1_4872 0.0728 0.2256 0.3227 -species1_4408 species1_4407 0.1148 0.7863 0.1460 -species1_10007 species1_10008 0.1071 0.5462 0.1960 -species1_236 species1_235 0.0834 0.2601 0.3207 -species1_4571 species1_4572 0.0745 1.0106 0.0737 -species1_897 species1_898 0.0916 0.9281 0.0987 -species1_5161 species1_5162 0.0707 0.4099 0.1725 -species1_6899 species1_6900 0.0814 0.6724 0.1210 -species1_5749 species1_5750 0.0325 0.3209 0.1013 -species1_2843 species1_2844 0.0327 0.8263 0.0396 -species1_653 species1_654 0.0382 0.8706 0.0439 -species1_8698 species1_8697 0.2628 2.2612 0.1162 -species1_405 species1_406 0.1135 0.1936 0.5861 -species1_4782 species1_4781 0.0341 1.1289 0.0302 -species1_42 species1_41 0.1711 0.4618 0.3706 -species1_1330 species1_1329 0.1074 0.7932 0.1354 -species1_11127 species1_11128 0.1866 1.6162 0.1155 -species1_7639 species1_7640 0.0787 0.4300 0.1830 -species1_7061 species1_7062 0.0571 0.3851 0.1483 -species1_56 species1_55 0.0260 0.6935 0.0375 -species1_417 species1_418 0.0272 0.8148 0.0334