Mercurial > repos > greg > ks_distribution
view ks_distribution.R @ 0:5ace8af6edb6 draft
Uploaded
author | greg |
---|---|
date | Mon, 01 May 2017 13:47:20 -0400 |
parents | |
children | a91bd45aa8b1 |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) option_list <- list( make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"), make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"), make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list) args <- parse_args(parser, positional_arguments=TRUE) opt <- args$options get_num_components = function(components_data) { # Get the max of the number_comp column. number_comp = components_data[, 3] num_components <- max(number_comp, na.rm=TRUE); num_components } get_pi_mu_var = function(components_data, num_components) { # FixMe: enhance this to generically handle any integer value for num_components. if (num_components == 1) { pi <- c(components_data[1, 9]); mu <- c(components_data[1, 7]); var <- c(components_data[1, 8]); } else if (num_components == 2) { pi <- c(components_data[2, 9], components_data[3, 9]); mu <- c(components_data[2, 7], components_data[3, 7]); var <- c(components_data[2, 8], components_data[3, 8]); } else if (num_components == 3) { pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); } else if (num_components == 4) { pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); } return = c(pi, mu, var) return } plot_ks<-function(kaks_input, output, pi, mu, var) { # Start PDF device driver to save charts to output. pdf(file=output, bg="white") # Change bin width bin <- 0.05 * seq(0, 40); kaks <- read.table(file=kaks_input, header=T); kaks <- kaks[kaks$Ks<2,]; h.kst <- hist(kaks$Ks, breaks=bin, plot=F); nc <- h.kst$counts; vx <- h.kst$mids; ntot <- sum(nc); # Set margin for plot bottom, left top, right. par(mai=c(0.5, 0.5, 0, 0)); # Plot dimension in inches. par(pin=c(2.5, 2.5)); g <- calculate_fitted_density(pi, mu, var); h <- ntot * 2.5 / sum(g); vx <- seq(1, 100) * 0.02; ymax <- max(nc) + 5; barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); # Add x-axis. axis(1); color <- c('green', 'blue', 'black', 'red'); for (i in 1:length(mu)) { lines(vx, g[,i] * h, lwd=2, col=color[i]); } }; calculate_fitted_density <- function(pi, mu, var) { comp <- length(pi); var <- var/mu^2; mu <- log(mu); #calculate lognormal density vx <- seq(1, 100) * 0.02; fx <- matrix(0, 100, comp); for (i in 1:100) { for (j in 1:comp) { fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); }; }; fx; } # Read in the components data. components_data <- read.delim(opt$components_input, header=TRUE); # Get the number of components. num_components <- get_num_components(components_data) # Set pi, mu, var. items <- get_pi_mu_var(components_data, num_components); pi <- items[1]; mu <- items[2]; var <- items[3]; # Plot the output. plot_ks(opt$kaks_input, opt$output, pi, mu, var);