Mercurial > repos > greg > ks_distribution
diff ks_distribution.R @ 0:5ace8af6edb6 draft
Uploaded
author | greg |
---|---|
date | Mon, 01 May 2017 13:47:20 -0400 |
parents | |
children | a91bd45aa8b1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ks_distribution.R Mon May 01 13:47:20 2017 -0400 @@ -0,0 +1,115 @@ +#!/usr/bin/env Rscript + +suppressPackageStartupMessages(library("optparse")) + +option_list <- list( + make_option(c("-c", "--components_input"), action="store", dest="components_input", help="Ks significant components input dataset"), + make_option(c("-k", "--kaks_input"), action="store", dest="kaks_input", help="KaKs analysis input dataset"), + make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset") +) + +parser <- OptionParser(usage="%prog [options] file", option_list=option_list) +args <- parse_args(parser, positional_arguments=TRUE) +opt <- args$options + + +get_num_components = function(components_data) +{ + # Get the max of the number_comp column. + number_comp = components_data[, 3] + num_components <- max(number_comp, na.rm=TRUE); + num_components +} + +get_pi_mu_var = function(components_data, num_components) +{ + # FixMe: enhance this to generically handle any integer value for num_components. + if (num_components == 1) + { + pi <- c(components_data[1, 9]); + mu <- c(components_data[1, 7]); + var <- c(components_data[1, 8]); + } + else if (num_components == 2) + { + pi <- c(components_data[2, 9], components_data[3, 9]); + mu <- c(components_data[2, 7], components_data[3, 7]); + var <- c(components_data[2, 8], components_data[3, 8]); + } + else if (num_components == 3) + { + pi <- c(components_data[4, 9], components_data[5, 9], components_data[6, 9]); + mu <- c(components_data[4, 7], components_data[5, 7], components_data[6, 7]); + var <- c(components_data[4, 8], components_data[5, 8], components_data[6, 8]); + } + else if (num_components == 4) + { + pi <- c(components_data[7, 9], components_data[8, 9], components_data[9, 9], components_data[10, 9]); + mu <- c(components_data[7, 7], components_data[8, 7], components_data[9, 7], components_data[10, 7]); + var <- c(components_data[7, 8], components_data[8, 8], components_data[9, 8], components_data[10, 8]); + } + return = c(pi, mu, var) + return +} + +plot_ks<-function(kaks_input, output, pi, mu, var) +{ + # Start PDF device driver to save charts to output. + pdf(file=output, bg="white") + # Change bin width + bin <- 0.05 * seq(0, 40); + kaks <- read.table(file=kaks_input, header=T); + kaks <- kaks[kaks$Ks<2,]; + h.kst <- hist(kaks$Ks, breaks=bin, plot=F); + nc <- h.kst$counts; + vx <- h.kst$mids; + ntot <- sum(nc); + # Set margin for plot bottom, left top, right. + par(mai=c(0.5, 0.5, 0, 0)); + # Plot dimension in inches. + par(pin=c(2.5, 2.5)); + g <- calculate_fitted_density(pi, mu, var); + h <- ntot * 2.5 / sum(g); + vx <- seq(1, 100) * 0.02; + ymax <- max(nc) + 5; + barplot(nc, space=0.25, offset=0, width=0.04, xlim=c(0,2), ylim=c(0, ymax)); + # Add x-axis. + axis(1); + color <- c('green', 'blue', 'black', 'red'); + for (i in 1:length(mu)) + { + lines(vx, g[,i] * h, lwd=2, col=color[i]); + } +}; + +calculate_fitted_density <- function(pi, mu, var) +{ + comp <- length(pi); + var <- var/mu^2; + mu <- log(mu); + #calculate lognormal density + vx <- seq(1, 100) * 0.02; + fx <- matrix(0, 100, comp); + for (i in 1:100) + { + for (j in 1:comp) + { + fx[i, j] <- pi[j] * dlnorm(vx[i], meanlog=mu[j], sdlog=(sqrt(var[j]))); + }; + }; + fx; +} + +# Read in the components data. +components_data <- read.delim(opt$components_input, header=TRUE); +# Get the number of components. +num_components <- get_num_components(components_data) + +# Set pi, mu, var. +items <- get_pi_mu_var(components_data, num_components); +pi <- items[1]; +mu <- items[2]; +var <- items[3]; + +# Plot the output. +plot_ks(opt$kaks_input, opt$output, pi, mu, var);