Mercurial > repos > greg > bmsb
diff BMSB.R @ 31:aefd45f2fa43 draft
Uploaded
author | greg |
---|---|
date | Thu, 15 Dec 2016 11:04:41 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/BMSB.R Thu Dec 15 11:04:41 2016 -0500 @@ -0,0 +1,578 @@ +#!/usr/bin/env Rscript + +suppressPackageStartupMessages(library("optparse")) + +options_list <- list( + make_option(c("-adult_mort", "--adult_mort"), action="store", help="Adjustment rate for adult mortality"), + make_option(c("-adult_nymph_accum", "--adult_nymph_accum"), action="store", help="Adjustment of DD accumulation (old nymph->adult)"), + make_option(c("-egg_mort", "--egg_mort"), action="store", help="Adjustment rate for egg mortality"), + make_option(c("-latitude", "--latitude"), action="store", help="Latitude of selected location"), + make_option(c("-location", "--location"), action="store", help="Selected location"), + make_option(c("-min_clutch_size", "--min_clutch_size"), action="store", help="Adjustment of minimum clutch size"), + make_option(c("-max_clutch_size", "--max_clutch_size"), action="store", help="Adjustment of maximum clutch size"), + make_option(c("-nymph_mort", "--nymph_mort"), action="store", help="Adjustment rate for nymph mortality"), + make_option(c("-old_nymph_accum", "--old_nymph_accum"), action="store", help="Adjustment of DD accumulation (young nymph->old nymph)"), + make_option(c("-output", "--output"), action="store", help="Output dataset"), + make_option(c("-oviposition", "--oviposition"), action="store", help="Adjustment for oviposition rate"), + make_option(c("-photoperiod", "--photoperiod"), action="store", help="Critical photoperiod for diapause induction/termination"), + make_option(c("-replications", "--replications"), action="store", help="Number of replications"), + make_option(c("-se_plot", "--se_plot"), action="store", help="Plot SE"), + make_option(c("-start_year", "--start_year"), action="store", help="Starting year"), + make_option(c("-sim_year", "--sim_year"), action="store", help="Simulation year"), + make_option(c("-temperature_datasets", "--temperature_datasets"), action="store", help="Temperature data for selected location"), + make_option(c("-young_nymph_accum", "--young_nymph_accum"), action="store", help="Adjustment of DD accumulation (egg->young nymph)"), +) + +parser <- OptionParser(usage="%prog [options] file", options_list) +arguements <- parse_args(parser, positional_arguments=TRUE) +opt <- args$options +args <- arguments$args + +temperature_datasets <- strsplit(opt$temperature_datasets, ",") + +# read in the input temperature datafile +data.input(opt$location, opt$start_year, temperature_datasets) + +input.name<-paste(opt$location, opt$sim_year, ".Rdat" ,sep="") +output.name<-paste(opt$location, opt$sim_year, "sim.Rdat", sep="") +load(input.name) + +# initialize matrix for results from all replications +S0.rep<-S1.rep<-S2.rep<-S3.rep<-S4.rep<-S5.rep<-matrix(rep(0,365*n.rep),ncol=n.rep) +newborn.rep<-death.rep<-adult.rep<-pop.rep<-g0.rep<-g1.rep<-g2.rep<-g0a.rep<-g1a.rep<-g2a.rep<-matrix(rep(0,365*n.rep),ncol=n.rep) + +# loop through replications +for (N.rep in 1:n.rep) +{ + # during each replication + n<-1000 # start with 1000 individuals -- user definable as well? + # Generation, Stage, DD, T, Diapause + vec.ini<-c(0,3,0,0,0) + # overwintering, previttelogenic,DD=0, T=0, no-diapause + vec.mat<-rep(vec.ini,n) + vec.mat<-t(matrix(vec.mat,nrow=5)) # complete matrix for the population + ph.p<-daylength(L) # complete photoperiod profile in a year, requires daylength function + + tot.pop<-NULL # time series of population size + gen0.pop<-rep(0,365) # gen.0 pop size + gen1.pop<-rep(0,365) + gen2.pop<-rep(0,365) + S0<-S1<-S2<-S3<-S4<-S5<-rep(0,365) + g0.adult<-g1.adult<-g2.adult<-rep(0,365) + N.newborn<-N.death<-N.adult<-rep(0,365) + dd.day<-rep(0,365) + + ptm <- proc.time() # start tick + + # all the days + for (day in 1:365) + { + photoperiod<-ph.p[day] # photoperiod in the day + temp.profile<-hourtemp(L,day) + mean.temp<-temp.profile[1] + dd.temp<-temp.profile[2] + dd.day[day]<-dd.temp + death.vec<-NULL # trash bin for death + birth.vec<-NULL # new born + #n<-length(vec.mat[,1]) # population size at previous day + + # all individuals + for (i in 1:n) + { + vec.ind<-vec.mat[i,] # find individual record + # first of all, still alive? + # adjustment for late season mortality rate + if (L<40) + { + post.mort<-1 + day.kill<-300 + } + else + { + post.mort<-2 + day.kill<-250 + } + # egg + if(vec.ind[2]==0) + { + death.prob=ar.em*mortality.egg(mean.temp) + } + else if (vec.ind[2]==1 | vec.ind[2]==2) + { + death.prob=ar.nm*mortality.nymph(mean.temp) + } + # for adult + else if (vec.ind[2]==3 | vec.ind[2]==4 | vec.ind[2]==5) + { + if (day<day.kill) + { + death.prob=ar.am*mortality.adult(mean.temp) + } + else + { + death.prob=ar.am*post.mort*mortality.adult(mean.temp)} # increase adult mortality after fall equinox + } + #(or dependent on temperature and life stage?) + u.d<-runif(1) + if (u.d<death.prob) + { + death.vec<-c(death.vec,i) + } + else + { + # aggregrate index of dead bug + # event 1 end of diapause + if (vec.ind[1]==0 && vec.ind[2]==3) + { + # overwintering adult (previttelogenic) + if (photoperiod>ph.cr && vec.ind[3]>68 && day<180) + { + # add 68C to become fully reproductively matured + vec.ind<-c(0,4,0,0,0) # transfer to vittelogenic + vec.mat[i,]<-vec.ind + } + else + { + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + } + } + if (vec.ind[1]!=0 && vec.ind[2]==3) + { + # NOT overwintering adult (previttelogenic) + current.gen<-vec.ind[1] + if (vec.ind[3]>68) + { + # add 68C to become fully reproductively matured + vec.ind<-c(current.gen,4,0,0,0) # transfer to vittelogenic + vec.mat[i,]<-vec.ind + } + else + { + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + } + } + + # event 2 oviposition -- where population dynamics comes from + if (vec.ind[2]==4 && vec.ind[1]==0 && mean.temp>10) + { + # vittelogenic stage, overwintering generation + if (vec.ind[4]==0) + { + # just turned in vittelogenic stage + n.birth=round(runif(1,2+min.ovi.adj,8+max.ovi.adj)) + } + else + { + p.birth=ar.ovi*0.01 # daily probability of birth + u1<-runif(1) + if (u1<p.birth) + { + n.birth=round(runif(1,2,8)) + } + } + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + if (n.birth>0) + { + # add new birth -- might be in different generations + new.gen<-vec.ind[1]+1 # generation +1 + new.ind<-c(new.gen,0,0,0,0) # egg profile + new.vec<-rep(new.ind,n.birth) + new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile + birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day + } + } + + # event 2 oviposition -- for gen 1. + if (vec.ind[2]==4 && vec.ind[1]==1 && mean.temp>12.5 && day<222) + { + # vittelogenic stage, 1st generation + if (vec.ind[4]==0) + { + # just turned in vittelogenic stage + n.birth=round(runif(1,2+min.ovi.adj,8+max.ovi.adj)) + } + else + { + p.birth=ar.ovi*0.01 # daily probability of birth + u1<-runif(1) + if (u1<p.birth) + { + n.birth=round(runif(1,2,8)) + } + } + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + vec.mat[i,]<-vec.ind + if (n.birth>0) + { + # add new birth -- might be in different generations + new.gen<-vec.ind[1]+1 # generation +1 + new.ind<-c(new.gen,0,0,0,0) # egg profile + new.vec<-rep(new.ind,n.birth) + new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile + birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day + } + } + + # event 3 development (with diapause determination) + # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg) + if (vec.ind[2]==0) + { + # egg stage + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + if (vec.ind[3]>=(68+dd.adj1)) + { + # from egg to young nymph, DD requirement met + current.gen<-vec.ind[1] + vec.ind<-c(current.gen,1,0,0,0) # transfer to young nym stage + } + else + { + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + } + vec.mat[i,]<-vec.ind + } + + # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause) + if (vec.ind[2]==1) + { + # young nymph stage + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + if (vec.ind[3]>=(250+dd.adj2)) + { + # from young to old nymph, DD requirement met + current.gen<-vec.ind[1] + vec.ind<-c(current.gen,2,0,0,0) # transfer to old nym stage + if (photoperiod<ph.cr && day > 180) + { + vec.ind[5]<-1 + } # prepare for diapausing + } + else + { + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + } + vec.mat[i,]<-vec.ind + } + + # event 3.3 old nymph to adult: previttelogenic or diapausing? + if (vec.ind[2]==2) + { + # old nymph stage + vec.ind[3]<-vec.ind[3]+dd.temp # add to DD + if (vec.ind[3]>=(200+dd.adj3)) + { + # from old to adult, DD requirement met + current.gen<-vec.ind[1] + if (vec.ind[5]==0) + { + # non-diapausing adult -- previttelogenic + vec.ind<-c(current.gen,3,0,0,0) + } + else + { + # diapausing + vec.ind<-c(current.gen,5,0,0,1) + } + } + else + { + vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage + } + vec.mat[i,]<-vec.ind + } + + # event 4 growing of diapausing adult (unimportant, but still necessary)## + if (vec.ind[2]==5) + { + vec.ind[3]<-vec.ind[3]+dd.temp + vec.ind[4]<-vec.ind[4]+1 + vec.mat[i,]<-vec.ind + } + } # else if it is still alive + } # end of the individual bug loop + + # find how many died + n.death<-length(death.vec) + if (n.death>0) + { + vec.mat<-vec.mat[-death.vec, ]} + # remove record of dead + # find how many new born + n.newborn<-length(birth.vec[,1]) + vec.mat<-rbind(vec.mat,birth.vec) + # update population size for the next day + n<-n-n.death+n.newborn + + # aggregate results by day + tot.pop<-c(tot.pop,n) + s0<-sum(vec.mat[,2]==0) #egg + s1<-sum(vec.mat[,2]==1) # young nymph + s2<-sum(vec.mat[,2]==2) # old nymph + s3<-sum(vec.mat[,2]==3) # previtellogenic + s4<-sum(vec.mat[,2]==4) # vitellogenic + s5<-sum(vec.mat[,2]==5) # diapausing + gen0<-sum(vec.mat[,1]==0) # overwintering adult + gen1<-sum(vec.mat[,1]==1) # first generation + gen2<-sum(vec.mat[,1]==2) # second generation + n.adult<-sum(vec.mat[,2]==3)+sum(vec.mat[,2]==4)+sum(vec.mat[,2]==5) # sum of all adults + gen0.pop[day]<-gen0 # gen.0 pop size + gen1.pop[day]<-gen1 + gen2.pop[day]<-gen2 + S0[day]<-s0 + S1[day]<-s1 + S2[day]<-s2 + S3[day]<-s3 + S4[day]<-s4 + S5[day]<-s5 + g0.adult[day]<-sum(vec.mat[,1]==0) + g1.adult[day]<-sum((vec.mat[,1]==1 & vec.mat[,2]==3) | (vec.mat[,1]==1 & vec.mat[,2]==4) | (vec.mat[,1]==1 & vec.mat[,2]==5)) + g2.adult[day]<-sum((vec.mat[,1]==2 & vec.mat[,2]==3) | (vec.mat[,1]==2 & vec.mat[,2]==4) | (vec.mat[,1]==2 & vec.mat[,2]==5)) + + N.newborn[day]<-n.newborn + N.death[day]<-n.death + N.adult[day]<-n.adult + print(c(N.rep,day,n,n.adult)) + } # end of 365 days + + #proc.time() - ptm + dd.cum<-cumsum(dd.day) + # save(dd.day,dd.cum,S0,S1,S2,S3,S4,S5,N.newborn,N.death,N.adult,tot.pop,gen0.pop,gen1.pop,gen2.pop,g0.adult,g1.adult,g2.adult,file="wenatchee2013sim.Rdat") + #newborn.rep<-death.rep<-adult.rep<-pop.rep<-g0.rep<-g1.rep<-g2.rep<-g0a.rep<-g1a.rep<-g2a.rep<-matrix(rep(0,365*n.rep),ncol=n.rep) + # collect all the outputs + S0.rep[,N.rep]<-S0 + S1.rep[,N.rep]<-S1 + S2.rep[,N.rep]<-S2 + S3.rep[,N.rep]<-S3 + S4.rep[,N.rep]<-S4 + S5.rep[,N.rep]<-S5 + newborn.rep[,N.rep]<-N.newborn + death.rep[,N.rep]<-N.death + adult.rep[,N.rep]<-N.adult + pop.rep[,N.rep]<-tot.pop + g0.rep[,N.rep]<-gen0.pop + g1.rep[,N.rep]<-gen1.pop + g2.rep[,N.rep]<-gen2.pop + g0a.rep[,N.rep]<-g0.adult + g1a.rep[,N.rep]<-g1.adult + g2a.rep[,N.rep]<-g2.adult + } + +save(dd.day,dd.cum,S0.rep,S1.rep,S2.rep,S3.rep,S4.rep,S5.rep,newborn.rep,death.rep,adult.rep,pop.rep,g0.rep,g1.rep,g2.rep,g0a.rep,g1a.rep,g2a.rep,file=opt$output) +# maybe do not need to export this bit, but for now just leave it as-is +# do we need to export this Rdat file? + + +######################################### +# input starting year and how many years +# n.yr and start.yr needs to be integer +# loc.name needs to be CHARACTER and matches exactly the name in the csv file!!! +data.input=function(loc, start.yr, temperature.datasets) +{ + n.yr <- length(temperature_datasets) + for (i in 1:n.yr) + { + expdata<-matrix(rep(0,365*3),nrow=365) + yr<-start.yr+i # replace 2004 with start. yr + name.input<-paste(temperature.datasets[i], ".csv", sep="") + namedat<-paste(loc, yr,".Rdat",sep="") + temp.data<-read.csv(file=name.input, header=T) + + expdata[,1]<-c(1:365) + expdata[,2]<-temp.data[c(1:365),3] #minimum + expdata[,3]<-temp.data[c(1:365),2] #maximum + save(expdata,file=namedat) + } +} +######################################### + +######################################### +daylength=function(L) +{ + # from Forsythe 1995 + p=0.8333 + dl<-NULL + for (i in 1:365) + { + theta<-0.2163108+2*atan(0.9671396*tan(0.00860*(i-186))) + phi<-asin(0.39795*cos(theta)) + dl[i]<-24-24/pi*acos((sin(p*pi/180)+sin(L*pi/180)*sin(phi))/(cos(L*pi/180)*cos(phi))) + } + dl # return a vector of daylength in 365 days +} +######################################### + +######################################### +hourtemp=function(L,date) +{ + threshold<-14.17 # base development threshold for BMSB + dnp<-expdata[date,2] # daily minimum + dxp<-expdata[date,3] # daily maximum + dmean<-0.5*(dnp+dxp) + dd<-0 # initialize degree day accumulation + + if (dxp<threshold) + { + dd<-0 + } + else + { + dlprofile<-daylength(L) # extract daylength data for entire year + T<-NULL # initialize hourly temperature + dh<-NULL #initialize degree hour vector + # date<-200 + y<-dlprofile[date] # calculate daylength in given date + z<-24-y # night length + a<-1.86 # lag coefficient + b<-2.20 # night coefficient + #tempdata<-read.csv("tempdata.csv") #import raw data set + # Should be outside function otherwise its redundant + risetime<-12-y/2 # sunrise time + settime<-12+y/2 # sunset time + ts<-(dxp-dnp)*sin(pi*(settime-5)/(y+2*a))+dnp + for (i in 1:24) + { + if (i>risetime && i<settime) + { + m<-i-5 # number of hours after Tmin until sunset + T[i]=(dxp-dnp)*sin(pi*m/(y+2*a))+dnp + if (T[i]<8.4) + { + dh[i]<-0 + } + else + { + dh[i]<-T[i]-8.4 + } + } + else if (i>settime) + { + n<-i-settime + T[i]=dnp+(ts-dnp)*exp(-b*n/z) + if (T[i]<8.4) + { + dh[i]<-0 + } + else + { + dh[i]<-T[i]-8.4 + } + } + else + { + n<-i+24-settime + T[i]=dnp+(ts-dnp)*exp(-b*n/z) + if (T[i]<8.4) + { + dh[i]<-0 + } + else + { + dh[i]<-T[i]-8.4 + } + } + } + dd<-sum(dh)/24 + } + return=c(dmean,dd) + return +} +######################################### + +######################################### +dev.egg=function(temperature) +{ + dev.rate=-0.9843*temperature+33.438 + return=dev.rate + return +} +######################################### + +######################################### +dev.young=function(temperature) +{ + n12<--0.3728*temperature+14.68 + n23<--0.6119*temperature+25.249 + dev.rate=mean(n12+n23) + return=dev.rate + return +} +######################################### + +######################################### +dev.old=function(temperature) +{ + n34<--0.6119*temperature+17.602 + n45<--0.4408*temperature+19.036 + dev.rate=mean(n34+n45) + return=dev.rate + return +} +######################################### + +######################################### +dev.emerg=function(temperature) +{ + emerg.rate<--0.5332*temperature+24.147 + return=emerg.rate + return +} +######################################### + +######################################### +mortality.egg=function(temperature) +{ + if (temperature<12.7) + { + mort.prob=0.8 + } + else + { + mort.prob=0.8-temperature/40 + if (mort.prob<0) + { + mort.prob=0.01 + } + } + return=mort.prob + return +} +######################################### + +######################################### +mortality.nymph=function(temperature) +{ + if (temperature<12.7) + { + mort.prob=0.03 + } + else + { + mort.prob=temperature*0.0008+0.03 + } + return=mort.prob + return +} +######################################### + +######################################### +mortality.adult=function(temperature) +{ + if (temperature<12.7) + { + mort.prob=0.002 + } + else + { + mort.prob=temperature*0.0005+0.02 + } + return=mort.prob + return +} +######################################### \ No newline at end of file