Mercurial > repos > greg > bmsb
view BMSB.R @ 31:aefd45f2fa43 draft
Uploaded
author | greg |
---|---|
date | Thu, 15 Dec 2016 11:04:41 -0500 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) options_list <- list( make_option(c("-adult_mort", "--adult_mort"), action="store", help="Adjustment rate for adult mortality"), make_option(c("-adult_nymph_accum", "--adult_nymph_accum"), action="store", help="Adjustment of DD accumulation (old nymph->adult)"), make_option(c("-egg_mort", "--egg_mort"), action="store", help="Adjustment rate for egg mortality"), make_option(c("-latitude", "--latitude"), action="store", help="Latitude of selected location"), make_option(c("-location", "--location"), action="store", help="Selected location"), make_option(c("-min_clutch_size", "--min_clutch_size"), action="store", help="Adjustment of minimum clutch size"), make_option(c("-max_clutch_size", "--max_clutch_size"), action="store", help="Adjustment of maximum clutch size"), make_option(c("-nymph_mort", "--nymph_mort"), action="store", help="Adjustment rate for nymph mortality"), make_option(c("-old_nymph_accum", "--old_nymph_accum"), action="store", help="Adjustment of DD accumulation (young nymph->old nymph)"), make_option(c("-output", "--output"), action="store", help="Output dataset"), make_option(c("-oviposition", "--oviposition"), action="store", help="Adjustment for oviposition rate"), make_option(c("-photoperiod", "--photoperiod"), action="store", help="Critical photoperiod for diapause induction/termination"), make_option(c("-replications", "--replications"), action="store", help="Number of replications"), make_option(c("-se_plot", "--se_plot"), action="store", help="Plot SE"), make_option(c("-start_year", "--start_year"), action="store", help="Starting year"), make_option(c("-sim_year", "--sim_year"), action="store", help="Simulation year"), make_option(c("-temperature_datasets", "--temperature_datasets"), action="store", help="Temperature data for selected location"), make_option(c("-young_nymph_accum", "--young_nymph_accum"), action="store", help="Adjustment of DD accumulation (egg->young nymph)"), ) parser <- OptionParser(usage="%prog [options] file", options_list) arguements <- parse_args(parser, positional_arguments=TRUE) opt <- args$options args <- arguments$args temperature_datasets <- strsplit(opt$temperature_datasets, ",") # read in the input temperature datafile data.input(opt$location, opt$start_year, temperature_datasets) input.name<-paste(opt$location, opt$sim_year, ".Rdat" ,sep="") output.name<-paste(opt$location, opt$sim_year, "sim.Rdat", sep="") load(input.name) # initialize matrix for results from all replications S0.rep<-S1.rep<-S2.rep<-S3.rep<-S4.rep<-S5.rep<-matrix(rep(0,365*n.rep),ncol=n.rep) newborn.rep<-death.rep<-adult.rep<-pop.rep<-g0.rep<-g1.rep<-g2.rep<-g0a.rep<-g1a.rep<-g2a.rep<-matrix(rep(0,365*n.rep),ncol=n.rep) # loop through replications for (N.rep in 1:n.rep) { # during each replication n<-1000 # start with 1000 individuals -- user definable as well? # Generation, Stage, DD, T, Diapause vec.ini<-c(0,3,0,0,0) # overwintering, previttelogenic,DD=0, T=0, no-diapause vec.mat<-rep(vec.ini,n) vec.mat<-t(matrix(vec.mat,nrow=5)) # complete matrix for the population ph.p<-daylength(L) # complete photoperiod profile in a year, requires daylength function tot.pop<-NULL # time series of population size gen0.pop<-rep(0,365) # gen.0 pop size gen1.pop<-rep(0,365) gen2.pop<-rep(0,365) S0<-S1<-S2<-S3<-S4<-S5<-rep(0,365) g0.adult<-g1.adult<-g2.adult<-rep(0,365) N.newborn<-N.death<-N.adult<-rep(0,365) dd.day<-rep(0,365) ptm <- proc.time() # start tick # all the days for (day in 1:365) { photoperiod<-ph.p[day] # photoperiod in the day temp.profile<-hourtemp(L,day) mean.temp<-temp.profile[1] dd.temp<-temp.profile[2] dd.day[day]<-dd.temp death.vec<-NULL # trash bin for death birth.vec<-NULL # new born #n<-length(vec.mat[,1]) # population size at previous day # all individuals for (i in 1:n) { vec.ind<-vec.mat[i,] # find individual record # first of all, still alive? # adjustment for late season mortality rate if (L<40) { post.mort<-1 day.kill<-300 } else { post.mort<-2 day.kill<-250 } # egg if(vec.ind[2]==0) { death.prob=ar.em*mortality.egg(mean.temp) } else if (vec.ind[2]==1 | vec.ind[2]==2) { death.prob=ar.nm*mortality.nymph(mean.temp) } # for adult else if (vec.ind[2]==3 | vec.ind[2]==4 | vec.ind[2]==5) { if (day<day.kill) { death.prob=ar.am*mortality.adult(mean.temp) } else { death.prob=ar.am*post.mort*mortality.adult(mean.temp)} # increase adult mortality after fall equinox } #(or dependent on temperature and life stage?) u.d<-runif(1) if (u.d<death.prob) { death.vec<-c(death.vec,i) } else { # aggregrate index of dead bug # event 1 end of diapause if (vec.ind[1]==0 && vec.ind[2]==3) { # overwintering adult (previttelogenic) if (photoperiod>ph.cr && vec.ind[3]>68 && day<180) { # add 68C to become fully reproductively matured vec.ind<-c(0,4,0,0,0) # transfer to vittelogenic vec.mat[i,]<-vec.ind } else { vec.ind[3]<-vec.ind[3]+dd.temp # add to DD vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage vec.mat[i,]<-vec.ind } } if (vec.ind[1]!=0 && vec.ind[2]==3) { # NOT overwintering adult (previttelogenic) current.gen<-vec.ind[1] if (vec.ind[3]>68) { # add 68C to become fully reproductively matured vec.ind<-c(current.gen,4,0,0,0) # transfer to vittelogenic vec.mat[i,]<-vec.ind } else { vec.ind[3]<-vec.ind[3]+dd.temp # add to DD vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage vec.mat[i,]<-vec.ind } } # event 2 oviposition -- where population dynamics comes from if (vec.ind[2]==4 && vec.ind[1]==0 && mean.temp>10) { # vittelogenic stage, overwintering generation if (vec.ind[4]==0) { # just turned in vittelogenic stage n.birth=round(runif(1,2+min.ovi.adj,8+max.ovi.adj)) } else { p.birth=ar.ovi*0.01 # daily probability of birth u1<-runif(1) if (u1<p.birth) { n.birth=round(runif(1,2,8)) } } vec.ind[3]<-vec.ind[3]+dd.temp # add to DD vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage vec.mat[i,]<-vec.ind if (n.birth>0) { # add new birth -- might be in different generations new.gen<-vec.ind[1]+1 # generation +1 new.ind<-c(new.gen,0,0,0,0) # egg profile new.vec<-rep(new.ind,n.birth) new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day } } # event 2 oviposition -- for gen 1. if (vec.ind[2]==4 && vec.ind[1]==1 && mean.temp>12.5 && day<222) { # vittelogenic stage, 1st generation if (vec.ind[4]==0) { # just turned in vittelogenic stage n.birth=round(runif(1,2+min.ovi.adj,8+max.ovi.adj)) } else { p.birth=ar.ovi*0.01 # daily probability of birth u1<-runif(1) if (u1<p.birth) { n.birth=round(runif(1,2,8)) } } vec.ind[3]<-vec.ind[3]+dd.temp # add to DD vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage vec.mat[i,]<-vec.ind if (n.birth>0) { # add new birth -- might be in different generations new.gen<-vec.ind[1]+1 # generation +1 new.ind<-c(new.gen,0,0,0,0) # egg profile new.vec<-rep(new.ind,n.birth) new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day } } # event 3 development (with diapause determination) # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg) if (vec.ind[2]==0) { # egg stage vec.ind[3]<-vec.ind[3]+dd.temp # add to DD if (vec.ind[3]>=(68+dd.adj1)) { # from egg to young nymph, DD requirement met current.gen<-vec.ind[1] vec.ind<-c(current.gen,1,0,0,0) # transfer to young nym stage } else { vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage } vec.mat[i,]<-vec.ind } # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause) if (vec.ind[2]==1) { # young nymph stage vec.ind[3]<-vec.ind[3]+dd.temp # add to DD if (vec.ind[3]>=(250+dd.adj2)) { # from young to old nymph, DD requirement met current.gen<-vec.ind[1] vec.ind<-c(current.gen,2,0,0,0) # transfer to old nym stage if (photoperiod<ph.cr && day > 180) { vec.ind[5]<-1 } # prepare for diapausing } else { vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage } vec.mat[i,]<-vec.ind } # event 3.3 old nymph to adult: previttelogenic or diapausing? if (vec.ind[2]==2) { # old nymph stage vec.ind[3]<-vec.ind[3]+dd.temp # add to DD if (vec.ind[3]>=(200+dd.adj3)) { # from old to adult, DD requirement met current.gen<-vec.ind[1] if (vec.ind[5]==0) { # non-diapausing adult -- previttelogenic vec.ind<-c(current.gen,3,0,0,0) } else { # diapausing vec.ind<-c(current.gen,5,0,0,1) } } else { vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage } vec.mat[i,]<-vec.ind } # event 4 growing of diapausing adult (unimportant, but still necessary)## if (vec.ind[2]==5) { vec.ind[3]<-vec.ind[3]+dd.temp vec.ind[4]<-vec.ind[4]+1 vec.mat[i,]<-vec.ind } } # else if it is still alive } # end of the individual bug loop # find how many died n.death<-length(death.vec) if (n.death>0) { vec.mat<-vec.mat[-death.vec, ]} # remove record of dead # find how many new born n.newborn<-length(birth.vec[,1]) vec.mat<-rbind(vec.mat,birth.vec) # update population size for the next day n<-n-n.death+n.newborn # aggregate results by day tot.pop<-c(tot.pop,n) s0<-sum(vec.mat[,2]==0) #egg s1<-sum(vec.mat[,2]==1) # young nymph s2<-sum(vec.mat[,2]==2) # old nymph s3<-sum(vec.mat[,2]==3) # previtellogenic s4<-sum(vec.mat[,2]==4) # vitellogenic s5<-sum(vec.mat[,2]==5) # diapausing gen0<-sum(vec.mat[,1]==0) # overwintering adult gen1<-sum(vec.mat[,1]==1) # first generation gen2<-sum(vec.mat[,1]==2) # second generation n.adult<-sum(vec.mat[,2]==3)+sum(vec.mat[,2]==4)+sum(vec.mat[,2]==5) # sum of all adults gen0.pop[day]<-gen0 # gen.0 pop size gen1.pop[day]<-gen1 gen2.pop[day]<-gen2 S0[day]<-s0 S1[day]<-s1 S2[day]<-s2 S3[day]<-s3 S4[day]<-s4 S5[day]<-s5 g0.adult[day]<-sum(vec.mat[,1]==0) g1.adult[day]<-sum((vec.mat[,1]==1 & vec.mat[,2]==3) | (vec.mat[,1]==1 & vec.mat[,2]==4) | (vec.mat[,1]==1 & vec.mat[,2]==5)) g2.adult[day]<-sum((vec.mat[,1]==2 & vec.mat[,2]==3) | (vec.mat[,1]==2 & vec.mat[,2]==4) | (vec.mat[,1]==2 & vec.mat[,2]==5)) N.newborn[day]<-n.newborn N.death[day]<-n.death N.adult[day]<-n.adult print(c(N.rep,day,n,n.adult)) } # end of 365 days #proc.time() - ptm dd.cum<-cumsum(dd.day) # save(dd.day,dd.cum,S0,S1,S2,S3,S4,S5,N.newborn,N.death,N.adult,tot.pop,gen0.pop,gen1.pop,gen2.pop,g0.adult,g1.adult,g2.adult,file="wenatchee2013sim.Rdat") #newborn.rep<-death.rep<-adult.rep<-pop.rep<-g0.rep<-g1.rep<-g2.rep<-g0a.rep<-g1a.rep<-g2a.rep<-matrix(rep(0,365*n.rep),ncol=n.rep) # collect all the outputs S0.rep[,N.rep]<-S0 S1.rep[,N.rep]<-S1 S2.rep[,N.rep]<-S2 S3.rep[,N.rep]<-S3 S4.rep[,N.rep]<-S4 S5.rep[,N.rep]<-S5 newborn.rep[,N.rep]<-N.newborn death.rep[,N.rep]<-N.death adult.rep[,N.rep]<-N.adult pop.rep[,N.rep]<-tot.pop g0.rep[,N.rep]<-gen0.pop g1.rep[,N.rep]<-gen1.pop g2.rep[,N.rep]<-gen2.pop g0a.rep[,N.rep]<-g0.adult g1a.rep[,N.rep]<-g1.adult g2a.rep[,N.rep]<-g2.adult } save(dd.day,dd.cum,S0.rep,S1.rep,S2.rep,S3.rep,S4.rep,S5.rep,newborn.rep,death.rep,adult.rep,pop.rep,g0.rep,g1.rep,g2.rep,g0a.rep,g1a.rep,g2a.rep,file=opt$output) # maybe do not need to export this bit, but for now just leave it as-is # do we need to export this Rdat file? ######################################### # input starting year and how many years # n.yr and start.yr needs to be integer # loc.name needs to be CHARACTER and matches exactly the name in the csv file!!! data.input=function(loc, start.yr, temperature.datasets) { n.yr <- length(temperature_datasets) for (i in 1:n.yr) { expdata<-matrix(rep(0,365*3),nrow=365) yr<-start.yr+i # replace 2004 with start. yr name.input<-paste(temperature.datasets[i], ".csv", sep="") namedat<-paste(loc, yr,".Rdat",sep="") temp.data<-read.csv(file=name.input, header=T) expdata[,1]<-c(1:365) expdata[,2]<-temp.data[c(1:365),3] #minimum expdata[,3]<-temp.data[c(1:365),2] #maximum save(expdata,file=namedat) } } ######################################### ######################################### daylength=function(L) { # from Forsythe 1995 p=0.8333 dl<-NULL for (i in 1:365) { theta<-0.2163108+2*atan(0.9671396*tan(0.00860*(i-186))) phi<-asin(0.39795*cos(theta)) dl[i]<-24-24/pi*acos((sin(p*pi/180)+sin(L*pi/180)*sin(phi))/(cos(L*pi/180)*cos(phi))) } dl # return a vector of daylength in 365 days } ######################################### ######################################### hourtemp=function(L,date) { threshold<-14.17 # base development threshold for BMSB dnp<-expdata[date,2] # daily minimum dxp<-expdata[date,3] # daily maximum dmean<-0.5*(dnp+dxp) dd<-0 # initialize degree day accumulation if (dxp<threshold) { dd<-0 } else { dlprofile<-daylength(L) # extract daylength data for entire year T<-NULL # initialize hourly temperature dh<-NULL #initialize degree hour vector # date<-200 y<-dlprofile[date] # calculate daylength in given date z<-24-y # night length a<-1.86 # lag coefficient b<-2.20 # night coefficient #tempdata<-read.csv("tempdata.csv") #import raw data set # Should be outside function otherwise its redundant risetime<-12-y/2 # sunrise time settime<-12+y/2 # sunset time ts<-(dxp-dnp)*sin(pi*(settime-5)/(y+2*a))+dnp for (i in 1:24) { if (i>risetime && i<settime) { m<-i-5 # number of hours after Tmin until sunset T[i]=(dxp-dnp)*sin(pi*m/(y+2*a))+dnp if (T[i]<8.4) { dh[i]<-0 } else { dh[i]<-T[i]-8.4 } } else if (i>settime) { n<-i-settime T[i]=dnp+(ts-dnp)*exp(-b*n/z) if (T[i]<8.4) { dh[i]<-0 } else { dh[i]<-T[i]-8.4 } } else { n<-i+24-settime T[i]=dnp+(ts-dnp)*exp(-b*n/z) if (T[i]<8.4) { dh[i]<-0 } else { dh[i]<-T[i]-8.4 } } } dd<-sum(dh)/24 } return=c(dmean,dd) return } ######################################### ######################################### dev.egg=function(temperature) { dev.rate=-0.9843*temperature+33.438 return=dev.rate return } ######################################### ######################################### dev.young=function(temperature) { n12<--0.3728*temperature+14.68 n23<--0.6119*temperature+25.249 dev.rate=mean(n12+n23) return=dev.rate return } ######################################### ######################################### dev.old=function(temperature) { n34<--0.6119*temperature+17.602 n45<--0.4408*temperature+19.036 dev.rate=mean(n34+n45) return=dev.rate return } ######################################### ######################################### dev.emerg=function(temperature) { emerg.rate<--0.5332*temperature+24.147 return=emerg.rate return } ######################################### ######################################### mortality.egg=function(temperature) { if (temperature<12.7) { mort.prob=0.8 } else { mort.prob=0.8-temperature/40 if (mort.prob<0) { mort.prob=0.01 } } return=mort.prob return } ######################################### ######################################### mortality.nymph=function(temperature) { if (temperature<12.7) { mort.prob=0.03 } else { mort.prob=temperature*0.0008+0.03 } return=mort.prob return } ######################################### ######################################### mortality.adult=function(temperature) { if (temperature<12.7) { mort.prob=0.002 } else { mort.prob=temperature*0.0005+0.02 } return=mort.prob return } #########################################