31
|
1 #!/usr/bin/env Rscript
|
|
2
|
|
3 suppressPackageStartupMessages(library("optparse"))
|
|
4
|
|
5 options_list <- list(
|
|
6 make_option(c("-adult_mort", "--adult_mort"), action="store", help="Adjustment rate for adult mortality"),
|
|
7 make_option(c("-adult_nymph_accum", "--adult_nymph_accum"), action="store", help="Adjustment of DD accumulation (old nymph->adult)"),
|
|
8 make_option(c("-egg_mort", "--egg_mort"), action="store", help="Adjustment rate for egg mortality"),
|
|
9 make_option(c("-latitude", "--latitude"), action="store", help="Latitude of selected location"),
|
|
10 make_option(c("-location", "--location"), action="store", help="Selected location"),
|
|
11 make_option(c("-min_clutch_size", "--min_clutch_size"), action="store", help="Adjustment of minimum clutch size"),
|
|
12 make_option(c("-max_clutch_size", "--max_clutch_size"), action="store", help="Adjustment of maximum clutch size"),
|
|
13 make_option(c("-nymph_mort", "--nymph_mort"), action="store", help="Adjustment rate for nymph mortality"),
|
|
14 make_option(c("-old_nymph_accum", "--old_nymph_accum"), action="store", help="Adjustment of DD accumulation (young nymph->old nymph)"),
|
|
15 make_option(c("-output", "--output"), action="store", help="Output dataset"),
|
|
16 make_option(c("-oviposition", "--oviposition"), action="store", help="Adjustment for oviposition rate"),
|
|
17 make_option(c("-photoperiod", "--photoperiod"), action="store", help="Critical photoperiod for diapause induction/termination"),
|
|
18 make_option(c("-replications", "--replications"), action="store", help="Number of replications"),
|
|
19 make_option(c("-se_plot", "--se_plot"), action="store", help="Plot SE"),
|
|
20 make_option(c("-start_year", "--start_year"), action="store", help="Starting year"),
|
|
21 make_option(c("-sim_year", "--sim_year"), action="store", help="Simulation year"),
|
|
22 make_option(c("-temperature_datasets", "--temperature_datasets"), action="store", help="Temperature data for selected location"),
|
|
23 make_option(c("-young_nymph_accum", "--young_nymph_accum"), action="store", help="Adjustment of DD accumulation (egg->young nymph)"),
|
|
24 )
|
|
25
|
|
26 parser <- OptionParser(usage="%prog [options] file", options_list)
|
|
27 arguements <- parse_args(parser, positional_arguments=TRUE)
|
|
28 opt <- args$options
|
|
29 args <- arguments$args
|
|
30
|
|
31 temperature_datasets <- strsplit(opt$temperature_datasets, ",")
|
|
32
|
|
33 # read in the input temperature datafile
|
|
34 data.input(opt$location, opt$start_year, temperature_datasets)
|
|
35
|
|
36 input.name<-paste(opt$location, opt$sim_year, ".Rdat" ,sep="")
|
|
37 output.name<-paste(opt$location, opt$sim_year, "sim.Rdat", sep="")
|
|
38 load(input.name)
|
|
39
|
|
40 # initialize matrix for results from all replications
|
|
41 S0.rep<-S1.rep<-S2.rep<-S3.rep<-S4.rep<-S5.rep<-matrix(rep(0,365*n.rep),ncol=n.rep)
|
|
42 newborn.rep<-death.rep<-adult.rep<-pop.rep<-g0.rep<-g1.rep<-g2.rep<-g0a.rep<-g1a.rep<-g2a.rep<-matrix(rep(0,365*n.rep),ncol=n.rep)
|
|
43
|
|
44 # loop through replications
|
|
45 for (N.rep in 1:n.rep)
|
|
46 {
|
|
47 # during each replication
|
|
48 n<-1000 # start with 1000 individuals -- user definable as well?
|
|
49 # Generation, Stage, DD, T, Diapause
|
|
50 vec.ini<-c(0,3,0,0,0)
|
|
51 # overwintering, previttelogenic,DD=0, T=0, no-diapause
|
|
52 vec.mat<-rep(vec.ini,n)
|
|
53 vec.mat<-t(matrix(vec.mat,nrow=5)) # complete matrix for the population
|
|
54 ph.p<-daylength(L) # complete photoperiod profile in a year, requires daylength function
|
|
55
|
|
56 tot.pop<-NULL # time series of population size
|
|
57 gen0.pop<-rep(0,365) # gen.0 pop size
|
|
58 gen1.pop<-rep(0,365)
|
|
59 gen2.pop<-rep(0,365)
|
|
60 S0<-S1<-S2<-S3<-S4<-S5<-rep(0,365)
|
|
61 g0.adult<-g1.adult<-g2.adult<-rep(0,365)
|
|
62 N.newborn<-N.death<-N.adult<-rep(0,365)
|
|
63 dd.day<-rep(0,365)
|
|
64
|
|
65 ptm <- proc.time() # start tick
|
|
66
|
|
67 # all the days
|
|
68 for (day in 1:365)
|
|
69 {
|
|
70 photoperiod<-ph.p[day] # photoperiod in the day
|
|
71 temp.profile<-hourtemp(L,day)
|
|
72 mean.temp<-temp.profile[1]
|
|
73 dd.temp<-temp.profile[2]
|
|
74 dd.day[day]<-dd.temp
|
|
75 death.vec<-NULL # trash bin for death
|
|
76 birth.vec<-NULL # new born
|
|
77 #n<-length(vec.mat[,1]) # population size at previous day
|
|
78
|
|
79 # all individuals
|
|
80 for (i in 1:n)
|
|
81 {
|
|
82 vec.ind<-vec.mat[i,] # find individual record
|
|
83 # first of all, still alive?
|
|
84 # adjustment for late season mortality rate
|
|
85 if (L<40)
|
|
86 {
|
|
87 post.mort<-1
|
|
88 day.kill<-300
|
|
89 }
|
|
90 else
|
|
91 {
|
|
92 post.mort<-2
|
|
93 day.kill<-250
|
|
94 }
|
|
95 # egg
|
|
96 if(vec.ind[2]==0)
|
|
97 {
|
|
98 death.prob=ar.em*mortality.egg(mean.temp)
|
|
99 }
|
|
100 else if (vec.ind[2]==1 | vec.ind[2]==2)
|
|
101 {
|
|
102 death.prob=ar.nm*mortality.nymph(mean.temp)
|
|
103 }
|
|
104 # for adult
|
|
105 else if (vec.ind[2]==3 | vec.ind[2]==4 | vec.ind[2]==5)
|
|
106 {
|
|
107 if (day<day.kill)
|
|
108 {
|
|
109 death.prob=ar.am*mortality.adult(mean.temp)
|
|
110 }
|
|
111 else
|
|
112 {
|
|
113 death.prob=ar.am*post.mort*mortality.adult(mean.temp)} # increase adult mortality after fall equinox
|
|
114 }
|
|
115 #(or dependent on temperature and life stage?)
|
|
116 u.d<-runif(1)
|
|
117 if (u.d<death.prob)
|
|
118 {
|
|
119 death.vec<-c(death.vec,i)
|
|
120 }
|
|
121 else
|
|
122 {
|
|
123 # aggregrate index of dead bug
|
|
124 # event 1 end of diapause
|
|
125 if (vec.ind[1]==0 && vec.ind[2]==3)
|
|
126 {
|
|
127 # overwintering adult (previttelogenic)
|
|
128 if (photoperiod>ph.cr && vec.ind[3]>68 && day<180)
|
|
129 {
|
|
130 # add 68C to become fully reproductively matured
|
|
131 vec.ind<-c(0,4,0,0,0) # transfer to vittelogenic
|
|
132 vec.mat[i,]<-vec.ind
|
|
133 }
|
|
134 else
|
|
135 {
|
|
136 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
137 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
138 vec.mat[i,]<-vec.ind
|
|
139 }
|
|
140 }
|
|
141 if (vec.ind[1]!=0 && vec.ind[2]==3)
|
|
142 {
|
|
143 # NOT overwintering adult (previttelogenic)
|
|
144 current.gen<-vec.ind[1]
|
|
145 if (vec.ind[3]>68)
|
|
146 {
|
|
147 # add 68C to become fully reproductively matured
|
|
148 vec.ind<-c(current.gen,4,0,0,0) # transfer to vittelogenic
|
|
149 vec.mat[i,]<-vec.ind
|
|
150 }
|
|
151 else
|
|
152 {
|
|
153 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
154 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
155 vec.mat[i,]<-vec.ind
|
|
156 }
|
|
157 }
|
|
158
|
|
159 # event 2 oviposition -- where population dynamics comes from
|
|
160 if (vec.ind[2]==4 && vec.ind[1]==0 && mean.temp>10)
|
|
161 {
|
|
162 # vittelogenic stage, overwintering generation
|
|
163 if (vec.ind[4]==0)
|
|
164 {
|
|
165 # just turned in vittelogenic stage
|
|
166 n.birth=round(runif(1,2+min.ovi.adj,8+max.ovi.adj))
|
|
167 }
|
|
168 else
|
|
169 {
|
|
170 p.birth=ar.ovi*0.01 # daily probability of birth
|
|
171 u1<-runif(1)
|
|
172 if (u1<p.birth)
|
|
173 {
|
|
174 n.birth=round(runif(1,2,8))
|
|
175 }
|
|
176 }
|
|
177 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
178 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
179 vec.mat[i,]<-vec.ind
|
|
180 if (n.birth>0)
|
|
181 {
|
|
182 # add new birth -- might be in different generations
|
|
183 new.gen<-vec.ind[1]+1 # generation +1
|
|
184 new.ind<-c(new.gen,0,0,0,0) # egg profile
|
|
185 new.vec<-rep(new.ind,n.birth)
|
|
186 new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile
|
|
187 birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day
|
|
188 }
|
|
189 }
|
|
190
|
|
191 # event 2 oviposition -- for gen 1.
|
|
192 if (vec.ind[2]==4 && vec.ind[1]==1 && mean.temp>12.5 && day<222)
|
|
193 {
|
|
194 # vittelogenic stage, 1st generation
|
|
195 if (vec.ind[4]==0)
|
|
196 {
|
|
197 # just turned in vittelogenic stage
|
|
198 n.birth=round(runif(1,2+min.ovi.adj,8+max.ovi.adj))
|
|
199 }
|
|
200 else
|
|
201 {
|
|
202 p.birth=ar.ovi*0.01 # daily probability of birth
|
|
203 u1<-runif(1)
|
|
204 if (u1<p.birth)
|
|
205 {
|
|
206 n.birth=round(runif(1,2,8))
|
|
207 }
|
|
208 }
|
|
209 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
210 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
211 vec.mat[i,]<-vec.ind
|
|
212 if (n.birth>0)
|
|
213 {
|
|
214 # add new birth -- might be in different generations
|
|
215 new.gen<-vec.ind[1]+1 # generation +1
|
|
216 new.ind<-c(new.gen,0,0,0,0) # egg profile
|
|
217 new.vec<-rep(new.ind,n.birth)
|
|
218 new.vec<-t(matrix(new.vec,nrow=5)) # update batch of egg profile
|
|
219 birth.vec<-rbind(birth.vec,new.vec) # group with total eggs laid in that day
|
|
220 }
|
|
221 }
|
|
222
|
|
223 # event 3 development (with diapause determination)
|
|
224 # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg)
|
|
225 if (vec.ind[2]==0)
|
|
226 {
|
|
227 # egg stage
|
|
228 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
229 if (vec.ind[3]>=(68+dd.adj1))
|
|
230 {
|
|
231 # from egg to young nymph, DD requirement met
|
|
232 current.gen<-vec.ind[1]
|
|
233 vec.ind<-c(current.gen,1,0,0,0) # transfer to young nym stage
|
|
234 }
|
|
235 else
|
|
236 {
|
|
237 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
238 }
|
|
239 vec.mat[i,]<-vec.ind
|
|
240 }
|
|
241
|
|
242 # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause)
|
|
243 if (vec.ind[2]==1)
|
|
244 {
|
|
245 # young nymph stage
|
|
246 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
247 if (vec.ind[3]>=(250+dd.adj2))
|
|
248 {
|
|
249 # from young to old nymph, DD requirement met
|
|
250 current.gen<-vec.ind[1]
|
|
251 vec.ind<-c(current.gen,2,0,0,0) # transfer to old nym stage
|
|
252 if (photoperiod<ph.cr && day > 180)
|
|
253 {
|
|
254 vec.ind[5]<-1
|
|
255 } # prepare for diapausing
|
|
256 }
|
|
257 else
|
|
258 {
|
|
259 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
260 }
|
|
261 vec.mat[i,]<-vec.ind
|
|
262 }
|
|
263
|
|
264 # event 3.3 old nymph to adult: previttelogenic or diapausing?
|
|
265 if (vec.ind[2]==2)
|
|
266 {
|
|
267 # old nymph stage
|
|
268 vec.ind[3]<-vec.ind[3]+dd.temp # add to DD
|
|
269 if (vec.ind[3]>=(200+dd.adj3))
|
|
270 {
|
|
271 # from old to adult, DD requirement met
|
|
272 current.gen<-vec.ind[1]
|
|
273 if (vec.ind[5]==0)
|
|
274 {
|
|
275 # non-diapausing adult -- previttelogenic
|
|
276 vec.ind<-c(current.gen,3,0,0,0)
|
|
277 }
|
|
278 else
|
|
279 {
|
|
280 # diapausing
|
|
281 vec.ind<-c(current.gen,5,0,0,1)
|
|
282 }
|
|
283 }
|
|
284 else
|
|
285 {
|
|
286 vec.ind[4]<-vec.ind[4]+1 # add 1 day in current stage
|
|
287 }
|
|
288 vec.mat[i,]<-vec.ind
|
|
289 }
|
|
290
|
|
291 # event 4 growing of diapausing adult (unimportant, but still necessary)##
|
|
292 if (vec.ind[2]==5)
|
|
293 {
|
|
294 vec.ind[3]<-vec.ind[3]+dd.temp
|
|
295 vec.ind[4]<-vec.ind[4]+1
|
|
296 vec.mat[i,]<-vec.ind
|
|
297 }
|
|
298 } # else if it is still alive
|
|
299 } # end of the individual bug loop
|
|
300
|
|
301 # find how many died
|
|
302 n.death<-length(death.vec)
|
|
303 if (n.death>0)
|
|
304 {
|
|
305 vec.mat<-vec.mat[-death.vec, ]}
|
|
306 # remove record of dead
|
|
307 # find how many new born
|
|
308 n.newborn<-length(birth.vec[,1])
|
|
309 vec.mat<-rbind(vec.mat,birth.vec)
|
|
310 # update population size for the next day
|
|
311 n<-n-n.death+n.newborn
|
|
312
|
|
313 # aggregate results by day
|
|
314 tot.pop<-c(tot.pop,n)
|
|
315 s0<-sum(vec.mat[,2]==0) #egg
|
|
316 s1<-sum(vec.mat[,2]==1) # young nymph
|
|
317 s2<-sum(vec.mat[,2]==2) # old nymph
|
|
318 s3<-sum(vec.mat[,2]==3) # previtellogenic
|
|
319 s4<-sum(vec.mat[,2]==4) # vitellogenic
|
|
320 s5<-sum(vec.mat[,2]==5) # diapausing
|
|
321 gen0<-sum(vec.mat[,1]==0) # overwintering adult
|
|
322 gen1<-sum(vec.mat[,1]==1) # first generation
|
|
323 gen2<-sum(vec.mat[,1]==2) # second generation
|
|
324 n.adult<-sum(vec.mat[,2]==3)+sum(vec.mat[,2]==4)+sum(vec.mat[,2]==5) # sum of all adults
|
|
325 gen0.pop[day]<-gen0 # gen.0 pop size
|
|
326 gen1.pop[day]<-gen1
|
|
327 gen2.pop[day]<-gen2
|
|
328 S0[day]<-s0
|
|
329 S1[day]<-s1
|
|
330 S2[day]<-s2
|
|
331 S3[day]<-s3
|
|
332 S4[day]<-s4
|
|
333 S5[day]<-s5
|
|
334 g0.adult[day]<-sum(vec.mat[,1]==0)
|
|
335 g1.adult[day]<-sum((vec.mat[,1]==1 & vec.mat[,2]==3) | (vec.mat[,1]==1 & vec.mat[,2]==4) | (vec.mat[,1]==1 & vec.mat[,2]==5))
|
|
336 g2.adult[day]<-sum((vec.mat[,1]==2 & vec.mat[,2]==3) | (vec.mat[,1]==2 & vec.mat[,2]==4) | (vec.mat[,1]==2 & vec.mat[,2]==5))
|
|
337
|
|
338 N.newborn[day]<-n.newborn
|
|
339 N.death[day]<-n.death
|
|
340 N.adult[day]<-n.adult
|
|
341 print(c(N.rep,day,n,n.adult))
|
|
342 } # end of 365 days
|
|
343
|
|
344 #proc.time() - ptm
|
|
345 dd.cum<-cumsum(dd.day)
|
|
346 # save(dd.day,dd.cum,S0,S1,S2,S3,S4,S5,N.newborn,N.death,N.adult,tot.pop,gen0.pop,gen1.pop,gen2.pop,g0.adult,g1.adult,g2.adult,file="wenatchee2013sim.Rdat")
|
|
347 #newborn.rep<-death.rep<-adult.rep<-pop.rep<-g0.rep<-g1.rep<-g2.rep<-g0a.rep<-g1a.rep<-g2a.rep<-matrix(rep(0,365*n.rep),ncol=n.rep)
|
|
348 # collect all the outputs
|
|
349 S0.rep[,N.rep]<-S0
|
|
350 S1.rep[,N.rep]<-S1
|
|
351 S2.rep[,N.rep]<-S2
|
|
352 S3.rep[,N.rep]<-S3
|
|
353 S4.rep[,N.rep]<-S4
|
|
354 S5.rep[,N.rep]<-S5
|
|
355 newborn.rep[,N.rep]<-N.newborn
|
|
356 death.rep[,N.rep]<-N.death
|
|
357 adult.rep[,N.rep]<-N.adult
|
|
358 pop.rep[,N.rep]<-tot.pop
|
|
359 g0.rep[,N.rep]<-gen0.pop
|
|
360 g1.rep[,N.rep]<-gen1.pop
|
|
361 g2.rep[,N.rep]<-gen2.pop
|
|
362 g0a.rep[,N.rep]<-g0.adult
|
|
363 g1a.rep[,N.rep]<-g1.adult
|
|
364 g2a.rep[,N.rep]<-g2.adult
|
|
365 }
|
|
366
|
|
367 save(dd.day,dd.cum,S0.rep,S1.rep,S2.rep,S3.rep,S4.rep,S5.rep,newborn.rep,death.rep,adult.rep,pop.rep,g0.rep,g1.rep,g2.rep,g0a.rep,g1a.rep,g2a.rep,file=opt$output)
|
|
368 # maybe do not need to export this bit, but for now just leave it as-is
|
|
369 # do we need to export this Rdat file?
|
|
370
|
|
371
|
|
372 #########################################
|
|
373 # input starting year and how many years
|
|
374 # n.yr and start.yr needs to be integer
|
|
375 # loc.name needs to be CHARACTER and matches exactly the name in the csv file!!!
|
|
376 data.input=function(loc, start.yr, temperature.datasets)
|
|
377 {
|
|
378 n.yr <- length(temperature_datasets)
|
|
379 for (i in 1:n.yr)
|
|
380 {
|
|
381 expdata<-matrix(rep(0,365*3),nrow=365)
|
|
382 yr<-start.yr+i # replace 2004 with start. yr
|
|
383 name.input<-paste(temperature.datasets[i], ".csv", sep="")
|
|
384 namedat<-paste(loc, yr,".Rdat",sep="")
|
|
385 temp.data<-read.csv(file=name.input, header=T)
|
|
386
|
|
387 expdata[,1]<-c(1:365)
|
|
388 expdata[,2]<-temp.data[c(1:365),3] #minimum
|
|
389 expdata[,3]<-temp.data[c(1:365),2] #maximum
|
|
390 save(expdata,file=namedat)
|
|
391 }
|
|
392 }
|
|
393 #########################################
|
|
394
|
|
395 #########################################
|
|
396 daylength=function(L)
|
|
397 {
|
|
398 # from Forsythe 1995
|
|
399 p=0.8333
|
|
400 dl<-NULL
|
|
401 for (i in 1:365)
|
|
402 {
|
|
403 theta<-0.2163108+2*atan(0.9671396*tan(0.00860*(i-186)))
|
|
404 phi<-asin(0.39795*cos(theta))
|
|
405 dl[i]<-24-24/pi*acos((sin(p*pi/180)+sin(L*pi/180)*sin(phi))/(cos(L*pi/180)*cos(phi)))
|
|
406 }
|
|
407 dl # return a vector of daylength in 365 days
|
|
408 }
|
|
409 #########################################
|
|
410
|
|
411 #########################################
|
|
412 hourtemp=function(L,date)
|
|
413 {
|
|
414 threshold<-14.17 # base development threshold for BMSB
|
|
415 dnp<-expdata[date,2] # daily minimum
|
|
416 dxp<-expdata[date,3] # daily maximum
|
|
417 dmean<-0.5*(dnp+dxp)
|
|
418 dd<-0 # initialize degree day accumulation
|
|
419
|
|
420 if (dxp<threshold)
|
|
421 {
|
|
422 dd<-0
|
|
423 }
|
|
424 else
|
|
425 {
|
|
426 dlprofile<-daylength(L) # extract daylength data for entire year
|
|
427 T<-NULL # initialize hourly temperature
|
|
428 dh<-NULL #initialize degree hour vector
|
|
429 # date<-200
|
|
430 y<-dlprofile[date] # calculate daylength in given date
|
|
431 z<-24-y # night length
|
|
432 a<-1.86 # lag coefficient
|
|
433 b<-2.20 # night coefficient
|
|
434 #tempdata<-read.csv("tempdata.csv") #import raw data set
|
|
435 # Should be outside function otherwise its redundant
|
|
436 risetime<-12-y/2 # sunrise time
|
|
437 settime<-12+y/2 # sunset time
|
|
438 ts<-(dxp-dnp)*sin(pi*(settime-5)/(y+2*a))+dnp
|
|
439 for (i in 1:24)
|
|
440 {
|
|
441 if (i>risetime && i<settime)
|
|
442 {
|
|
443 m<-i-5 # number of hours after Tmin until sunset
|
|
444 T[i]=(dxp-dnp)*sin(pi*m/(y+2*a))+dnp
|
|
445 if (T[i]<8.4)
|
|
446 {
|
|
447 dh[i]<-0
|
|
448 }
|
|
449 else
|
|
450 {
|
|
451 dh[i]<-T[i]-8.4
|
|
452 }
|
|
453 }
|
|
454 else if (i>settime)
|
|
455 {
|
|
456 n<-i-settime
|
|
457 T[i]=dnp+(ts-dnp)*exp(-b*n/z)
|
|
458 if (T[i]<8.4)
|
|
459 {
|
|
460 dh[i]<-0
|
|
461 }
|
|
462 else
|
|
463 {
|
|
464 dh[i]<-T[i]-8.4
|
|
465 }
|
|
466 }
|
|
467 else
|
|
468 {
|
|
469 n<-i+24-settime
|
|
470 T[i]=dnp+(ts-dnp)*exp(-b*n/z)
|
|
471 if (T[i]<8.4)
|
|
472 {
|
|
473 dh[i]<-0
|
|
474 }
|
|
475 else
|
|
476 {
|
|
477 dh[i]<-T[i]-8.4
|
|
478 }
|
|
479 }
|
|
480 }
|
|
481 dd<-sum(dh)/24
|
|
482 }
|
|
483 return=c(dmean,dd)
|
|
484 return
|
|
485 }
|
|
486 #########################################
|
|
487
|
|
488 #########################################
|
|
489 dev.egg=function(temperature)
|
|
490 {
|
|
491 dev.rate=-0.9843*temperature+33.438
|
|
492 return=dev.rate
|
|
493 return
|
|
494 }
|
|
495 #########################################
|
|
496
|
|
497 #########################################
|
|
498 dev.young=function(temperature)
|
|
499 {
|
|
500 n12<--0.3728*temperature+14.68
|
|
501 n23<--0.6119*temperature+25.249
|
|
502 dev.rate=mean(n12+n23)
|
|
503 return=dev.rate
|
|
504 return
|
|
505 }
|
|
506 #########################################
|
|
507
|
|
508 #########################################
|
|
509 dev.old=function(temperature)
|
|
510 {
|
|
511 n34<--0.6119*temperature+17.602
|
|
512 n45<--0.4408*temperature+19.036
|
|
513 dev.rate=mean(n34+n45)
|
|
514 return=dev.rate
|
|
515 return
|
|
516 }
|
|
517 #########################################
|
|
518
|
|
519 #########################################
|
|
520 dev.emerg=function(temperature)
|
|
521 {
|
|
522 emerg.rate<--0.5332*temperature+24.147
|
|
523 return=emerg.rate
|
|
524 return
|
|
525 }
|
|
526 #########################################
|
|
527
|
|
528 #########################################
|
|
529 mortality.egg=function(temperature)
|
|
530 {
|
|
531 if (temperature<12.7)
|
|
532 {
|
|
533 mort.prob=0.8
|
|
534 }
|
|
535 else
|
|
536 {
|
|
537 mort.prob=0.8-temperature/40
|
|
538 if (mort.prob<0)
|
|
539 {
|
|
540 mort.prob=0.01
|
|
541 }
|
|
542 }
|
|
543 return=mort.prob
|
|
544 return
|
|
545 }
|
|
546 #########################################
|
|
547
|
|
548 #########################################
|
|
549 mortality.nymph=function(temperature)
|
|
550 {
|
|
551 if (temperature<12.7)
|
|
552 {
|
|
553 mort.prob=0.03
|
|
554 }
|
|
555 else
|
|
556 {
|
|
557 mort.prob=temperature*0.0008+0.03
|
|
558 }
|
|
559 return=mort.prob
|
|
560 return
|
|
561 }
|
|
562 #########################################
|
|
563
|
|
564 #########################################
|
|
565 mortality.adult=function(temperature)
|
|
566 {
|
|
567 if (temperature<12.7)
|
|
568 {
|
|
569 mort.prob=0.002
|
|
570 }
|
|
571 else
|
|
572 {
|
|
573 mort.prob=temperature*0.0005+0.02
|
|
574 }
|
|
575 return=mort.prob
|
|
576 return
|
|
577 }
|
|
578 ######################################### |