0
|
1 #!/usr/bin/python
|
|
2 # python parser module for size distributions, guided by GFF3
|
|
3 # version 0.9.1 (1-6-2014)
|
|
4 # Usage readmap.py <1:index source> <2:extraction directive> <3:output pre-mir> <4: output mature miRs> <5:mirbase GFF3>
|
|
5 # <6:pathToLatticeDataframe or "dummy_dataframe_path"> <7:Rcode or "dummy_plotCode"> <8:latticePDF or "dummy_latticePDF">
|
|
6 # <9:10:11 filePath:FileExt:FileLabel> <.. ad lib>
|
|
7
|
|
8 import sys, subprocess, argparse
|
|
9 from smRtools import *
|
|
10 from collections import OrderedDict, defaultdict
|
|
11 import os
|
|
12
|
|
13 def Parser():
|
|
14 the_parser = argparse.ArgumentParser()
|
|
15 the_parser.add_argument('--output_size_distribution', action="store", type=str, help="size distribution dataframe")
|
|
16 the_parser.add_argument('--reference_fasta', action="store", type=str, help="output file")
|
|
17 the_parser.add_argument('--reference_bowtie_index',action='store', help="paths to indexed or fasta references")
|
|
18 the_parser.add_argument('--input',nargs='+', help="paths to multiple input files")
|
|
19 the_parser.add_argument('--ext',nargs='+', help="input file type")
|
|
20 the_parser.add_argument('--label',nargs='+', help="labels of multiple input files")
|
|
21 the_parser.add_argument('--normalization_factor',nargs='+', type=float, help="Normalization factor for input file")
|
|
22 the_parser.add_argument('--gff', type=str, help="GFF containing regions of interest")
|
|
23 the_parser.add_argument('--minquery', type=int, help="Minimum readsize")
|
|
24 the_parser.add_argument('--maxquery', type=int, help="Maximum readsize")
|
|
25 the_parser.add_argument('--rcode', type=str, help="R script")
|
|
26 the_parser.add_argument('--global_size', action="store_true", help="if specified, size distribution is calcilated for the sum of all items")
|
|
27 the_parser.add_argument('--collapse', action="store_true", help="if specified, forward and reverse reads are collapsed")
|
|
28 args = the_parser.parse_args()
|
|
29 return args
|
|
30
|
|
31 args=Parser()
|
|
32 if args.reference_fasta:
|
|
33 genomeRefFormat = "fastaSource"
|
|
34 genomeRefFile = args.reference_fasta
|
|
35 if args.reference_bowtie_index:
|
|
36 genomeRefFormat = "bowtieIndex"
|
|
37 genomeRefFile = args.reference_bowtie_index
|
|
38 size_distribution_file=args.output_size_distribution
|
|
39 minquery=args.minquery
|
|
40 maxquery=args.maxquery
|
|
41 Rcode = args.rcode
|
|
42 filePath=args.input
|
|
43 fileExt=args.ext
|
|
44 fileLabel=args.label
|
|
45 normalization_factor=args.normalization_factor
|
|
46 global_size=args.global_size
|
|
47 collapse=args.collapse
|
|
48
|
|
49 if collapse:
|
|
50 pol=["both"]
|
|
51 else:
|
|
52 pol=["F", "R"]
|
|
53
|
|
54 MasterListOfGenomes = OrderedDict()
|
|
55
|
|
56 def process_samples(filePath):
|
|
57 for i, filePath in enumerate(filePath):
|
|
58 norm=normalization_factor[i]
|
|
59 print fileLabel[i]
|
|
60 MasterListOfGenomes[fileLabel[i]] = HandleSmRNAwindows (alignmentFile=filePath, alignmentFileFormat=fileExt[i], genomeRefFile=genomeRefFile, genomeRefFormat=genomeRefFormat,\
|
|
61 biosample=fileLabel[i], size_inf=minquery, size_sup=maxquery, norm=norm)
|
|
62 return MasterListOfGenomes
|
|
63
|
|
64 def write_size_distribution_dataframe(readDict, size_distribution_file, pol=["both"] ):
|
|
65 '''refactored on 7-9-2014'''
|
|
66 with open(size_distribution_file, 'w') as size_distrib:
|
|
67 print >>size_distrib, "gene\tpolarity\tsize\tcount\tsample"
|
|
68 for sample in readDict.keys():
|
|
69 if args.gff:
|
|
70 dict=readDict[sample]
|
|
71 else:
|
|
72 dict=readDict[sample].instanceDict
|
|
73 for gene in dict.keys():
|
|
74 histogram = dict[gene].size_histogram()
|
|
75 for polarity in pol:
|
|
76 for size, count in histogram[polarity].iteritems():
|
|
77 print >>size_distrib, "%s\t%s\t%s\t%s\t%s" % (gene, polarity, size, count, sample)
|
|
78
|
|
79 def write_size_distribution_dataframe_global(readDict, size_distribution_file, pol=["both"]):
|
|
80 with open(size_distribution_file, 'w') as size_distrib:
|
|
81 print >>size_distrib, "gene\tpolarity\tsize\tcount\tsample"
|
|
82 for sample in readDict.keys():
|
|
83 histogram = readDict[sample].size_histogram()
|
|
84 gene="sample"
|
|
85 for polarity in pol:
|
|
86 for size, count in histogram[polarity].iteritems():
|
|
87 print >>size_distrib, "%s\t%s\t%s\t%s\t%s" % (gene, polarity, size, count, sample)
|
|
88
|
|
89 def gff_item_subinstances(readDict, gff3):
|
|
90 GFFinstanceDict=OrderedDict()
|
|
91 with open(gff3) as gff:
|
|
92 for line in gff:
|
|
93 if line[0] == "#": continue
|
|
94 gff_fields = line[:-1].split("\t")
|
|
95 chrom = gff_fields[0]
|
|
96 gff_name = gff_fields[-1].split("Name=")[-1].split(";")[0] # to isolate the GFF Name
|
|
97 item_upstream_coordinate = int(gff_fields[3])
|
|
98 item_downstream_coordinate = int(gff_fields[4])
|
|
99 item_polarity = gff_fields[6]
|
|
100 for sample in readDict.keys():
|
|
101 if not GFFinstanceDict.has_key(sample):
|
|
102 GFFinstanceDict[sample]={}
|
|
103 subinstance=extractsubinstance(item_upstream_coordinate, item_downstream_coordinate, readDict[sample].instanceDict[chrom])
|
|
104 if item_polarity == '-':
|
|
105 subinstance.readDict={key*-1:value for key, value in subinstance.readDict.iteritems()}
|
|
106 # subinstance.readDict.setdefault(key, [])
|
|
107 subinstance.gene=gff_name
|
|
108 GFFinstanceDict[sample][gff_name]=subinstance
|
|
109 return GFFinstanceDict
|
|
110
|
|
111 MasterListOfGenomes=process_samples(filePath)
|
|
112
|
|
113 if args.gff:
|
|
114 MasterListOfGenomes=gff_item_subinstances(MasterListOfGenomes, args.gff)
|
|
115
|
|
116 if global_size:
|
|
117 write_size_distribution_dataframe_global(MasterListOfGenomes, size_distribution_file, pol)
|
|
118 else:
|
|
119 write_size_distribution_dataframe(MasterListOfGenomes, size_distribution_file, pol)
|
|
120
|
|
121 R_command="Rscript "+ Rcode
|
|
122 process = subprocess.Popen(R_command.split())
|
|
123 process.wait()
|
|
124
|
|
125
|