Mercurial > repos > devteam > logistic_regression_vif
view logistic_regression_vif.py @ 0:9dbe348a70c3 draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 09:12:43 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python import sys from rpy import * import numpy def stop_err(msg): sys.stderr.write(msg) sys.exit() infile = sys.argv[1] y_col = int(sys.argv[2])-1 x_cols = sys.argv[3].split(',') outfile = sys.argv[4] print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) fout = open(outfile,'w') elems = [] for i, line in enumerate( file( infile ) ): line = line.rstrip('\r\n') if len( line )>0 and not line.startswith( '#' ): elems = line.split( '\t' ) break if i == 30: break # Hopefully we'll never get here... if len( elems )<1: stop_err( "The data in your input dataset is either missing or not formatted properly." ) y_vals = [] x_vals = [] for k, col in enumerate(x_cols): x_cols[k] = int(col)-1 x_vals.append([]) NA = 'NA' for ind, line in enumerate( file( infile )): if line and not line.startswith( '#' ): try: fields = line.split("\t") try: yval = float(fields[y_col]) except: yval = r('NA') y_vals.append(yval) for k, col in enumerate(x_cols): try: xval = float(fields[col]) except: xval = r('NA') x_vals[k].append(xval) except: pass x_vals1 = numpy.asarray(x_vals).transpose() check1 = 0 check0 = 0 for i in y_vals: if i == 1: check1 = 1 if i == 0: check0 = 1 if check1 == 0 or check0 == 0: sys.exit("Warning: logistic regression must have at least two classes") for i in y_vals: if i not in [1, 0, r('NA')]: print >> fout, str(i) sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.") dat = r.list(x=array(x_vals1), y=y_vals) novif = 0 set_default_mode(NO_CONVERSION) try: linear_model = r.glm(r("y ~ x"), data=r.na_exclude(dat), family="binomial") except RException, rex: stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") if len(x_cols)>1: try: r('suppressPackageStartupMessages(library(car))') r.assign('dat', dat) r.assign('ncols', len(x_cols)) vif = r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx), family="binomial")')) except RException, rex: print rex else: novif = 1 set_default_mode(BASIC_CONVERSION) coeffs = linear_model.as_py()['coefficients'] null_deviance = linear_model.as_py()['null.deviance'] residual_deviance = linear_model.as_py()['deviance'] yintercept = coeffs['(Intercept)'] summary = r.summary(linear_model) co = summary.get('coefficients', 'NA') """ if len(co) != len(x_vals)+1: stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") """ try: yintercept = r.round(float(yintercept), digits=10) pvaly = r.round(float(co[0][3]), digits=10) except: pass print >> fout, "response column\tc%d" % (y_col+1) tempP = [] for i in x_cols: tempP.append('c'+str(i+1)) tempP = ','.join(tempP) print >> fout, "predictor column(s)\t%s" % (tempP) print >> fout, "Y-intercept\t%s" % (yintercept) print >> fout, "p-value (Y-intercept)\t%s" % (pvaly) if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable try: slope = r.round(float(coeffs['x']), digits=10) except: slope = 'NA' try: pval = r.round(float(co[1][3]), digits=10) except: pval = 'NA' print >> fout, "Slope (c%d)\t%s" % ( x_cols[0]+1, slope ) print >> fout, "p-value (c%d)\t%s" % ( x_cols[0]+1, pval ) else: #Multiple regression case with >1 predictors ind = 1 while ind < len(coeffs.keys()): try: slope = r.round(float(coeffs['x'+str(ind)]), digits=10) except: slope = 'NA' print >> fout, "Slope (c%d)\t%s" % ( x_cols[ind-1]+1, slope ) try: pval = r.round(float(co[ind][3]), digits=10) except: pval = 'NA' print >> fout, "p-value (c%d)\t%s" % ( x_cols[ind-1]+1, pval ) ind += 1 rsq = summary.get('r.squared','NA') try: rsq = r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5) null_deviance = r.round(float(null_deviance), digits=5) residual_deviance = r.round(float(residual_deviance), digits=5) except: pass print >> fout, "Null deviance\t%s" % (null_deviance) print >> fout, "Residual deviance\t%s" % (residual_deviance) print >> fout, "pseudo R-squared\t%s" % (rsq) print >> fout, "\n" print >> fout, 'vif' if novif == 0: py_vif = vif.as_py() count = 0 for i in sorted(py_vif.keys()): print >> fout, 'c'+str(x_cols[count]+1), str(py_vif[i]) count += 1 elif novif == 1: print >> fout, "vif can calculate only when model have more than 1 predictor"