Mercurial > repos > devteam > logistic_regression_vif
comparison logistic_regression_vif.py @ 0:9dbe348a70c3 draft default tip
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 09:12:43 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9dbe348a70c3 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import sys | |
4 from rpy import * | |
5 import numpy | |
6 | |
7 def stop_err(msg): | |
8 sys.stderr.write(msg) | |
9 sys.exit() | |
10 | |
11 infile = sys.argv[1] | |
12 y_col = int(sys.argv[2])-1 | |
13 x_cols = sys.argv[3].split(',') | |
14 outfile = sys.argv[4] | |
15 | |
16 | |
17 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | |
18 fout = open(outfile,'w') | |
19 elems = [] | |
20 for i, line in enumerate( file( infile ) ): | |
21 line = line.rstrip('\r\n') | |
22 if len( line )>0 and not line.startswith( '#' ): | |
23 elems = line.split( '\t' ) | |
24 break | |
25 if i == 30: | |
26 break # Hopefully we'll never get here... | |
27 | |
28 if len( elems )<1: | |
29 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
30 | |
31 y_vals = [] | |
32 x_vals = [] | |
33 | |
34 for k, col in enumerate(x_cols): | |
35 x_cols[k] = int(col)-1 | |
36 x_vals.append([]) | |
37 | |
38 NA = 'NA' | |
39 for ind, line in enumerate( file( infile )): | |
40 if line and not line.startswith( '#' ): | |
41 try: | |
42 fields = line.split("\t") | |
43 try: | |
44 yval = float(fields[y_col]) | |
45 except: | |
46 yval = r('NA') | |
47 y_vals.append(yval) | |
48 for k, col in enumerate(x_cols): | |
49 try: | |
50 xval = float(fields[col]) | |
51 except: | |
52 xval = r('NA') | |
53 x_vals[k].append(xval) | |
54 except: | |
55 pass | |
56 | |
57 x_vals1 = numpy.asarray(x_vals).transpose() | |
58 | |
59 check1 = 0 | |
60 check0 = 0 | |
61 for i in y_vals: | |
62 if i == 1: | |
63 check1 = 1 | |
64 if i == 0: | |
65 check0 = 1 | |
66 if check1 == 0 or check0 == 0: | |
67 sys.exit("Warning: logistic regression must have at least two classes") | |
68 | |
69 for i in y_vals: | |
70 if i not in [1, 0, r('NA')]: | |
71 print >> fout, str(i) | |
72 sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.") | |
73 | |
74 dat = r.list(x=array(x_vals1), y=y_vals) | |
75 novif = 0 | |
76 set_default_mode(NO_CONVERSION) | |
77 try: | |
78 linear_model = r.glm(r("y ~ x"), data=r.na_exclude(dat), family="binomial") | |
79 except RException, rex: | |
80 stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
81 if len(x_cols)>1: | |
82 try: | |
83 r('suppressPackageStartupMessages(library(car))') | |
84 r.assign('dat', dat) | |
85 r.assign('ncols', len(x_cols)) | |
86 vif = r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx), family="binomial")')) | |
87 except RException, rex: | |
88 print rex | |
89 else: | |
90 novif = 1 | |
91 | |
92 set_default_mode(BASIC_CONVERSION) | |
93 | |
94 coeffs = linear_model.as_py()['coefficients'] | |
95 null_deviance = linear_model.as_py()['null.deviance'] | |
96 residual_deviance = linear_model.as_py()['deviance'] | |
97 yintercept = coeffs['(Intercept)'] | |
98 summary = r.summary(linear_model) | |
99 co = summary.get('coefficients', 'NA') | |
100 """ | |
101 if len(co) != len(x_vals)+1: | |
102 stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
103 """ | |
104 | |
105 try: | |
106 yintercept = r.round(float(yintercept), digits=10) | |
107 pvaly = r.round(float(co[0][3]), digits=10) | |
108 except: | |
109 pass | |
110 print >> fout, "response column\tc%d" % (y_col+1) | |
111 tempP = [] | |
112 for i in x_cols: | |
113 tempP.append('c'+str(i+1)) | |
114 tempP = ','.join(tempP) | |
115 print >> fout, "predictor column(s)\t%s" % (tempP) | |
116 print >> fout, "Y-intercept\t%s" % (yintercept) | |
117 print >> fout, "p-value (Y-intercept)\t%s" % (pvaly) | |
118 | |
119 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
120 try: | |
121 slope = r.round(float(coeffs['x']), digits=10) | |
122 except: | |
123 slope = 'NA' | |
124 try: | |
125 pval = r.round(float(co[1][3]), digits=10) | |
126 except: | |
127 pval = 'NA' | |
128 print >> fout, "Slope (c%d)\t%s" % ( x_cols[0]+1, slope ) | |
129 print >> fout, "p-value (c%d)\t%s" % ( x_cols[0]+1, pval ) | |
130 else: #Multiple regression case with >1 predictors | |
131 ind = 1 | |
132 while ind < len(coeffs.keys()): | |
133 try: | |
134 slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
135 except: | |
136 slope = 'NA' | |
137 print >> fout, "Slope (c%d)\t%s" % ( x_cols[ind-1]+1, slope ) | |
138 try: | |
139 pval = r.round(float(co[ind][3]), digits=10) | |
140 except: | |
141 pval = 'NA' | |
142 print >> fout, "p-value (c%d)\t%s" % ( x_cols[ind-1]+1, pval ) | |
143 ind += 1 | |
144 | |
145 rsq = summary.get('r.squared','NA') | |
146 | |
147 try: | |
148 rsq = r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5) | |
149 null_deviance = r.round(float(null_deviance), digits=5) | |
150 residual_deviance = r.round(float(residual_deviance), digits=5) | |
151 except: | |
152 pass | |
153 | |
154 print >> fout, "Null deviance\t%s" % (null_deviance) | |
155 print >> fout, "Residual deviance\t%s" % (residual_deviance) | |
156 print >> fout, "pseudo R-squared\t%s" % (rsq) | |
157 print >> fout, "\n" | |
158 print >> fout, 'vif' | |
159 | |
160 if novif == 0: | |
161 py_vif = vif.as_py() | |
162 count = 0 | |
163 for i in sorted(py_vif.keys()): | |
164 print >> fout, 'c'+str(x_cols[count]+1), str(py_vif[i]) | |
165 count += 1 | |
166 elif novif == 1: | |
167 print >> fout, "vif can calculate only when model have more than 1 predictor" |