Mercurial > repos > davidvanzessen > report_clonality_tcell_igg
view RScript.r @ 0:1d429107cd26 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 07 Mar 2014 05:42:31 -0500 |
parents | |
children | fd1b76816395 |
line wrap: on
line source
#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) args <- commandArgs(trailingOnly = TRUE) inFile = args[1] outFile = args[2] outDir = args[3] clonalType = args[4] species = args[5] if (!("gridExtra" %in% rownames(installed.packages()))) { install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") } library(gridExtra) if (!("ggplot2" %in% rownames(installed.packages()))) { install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") } require(ggplot2) if (!("plyr" %in% rownames(installed.packages()))) { install.packages("plyr", repos="http://cran.xl-mirror.nl/") } require(plyr) if (!("data.table" %in% rownames(installed.packages()))) { install.packages("data.table", repos="http://cran.xl-mirror.nl/") } library(data.table) test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") test = test[test$Sample != "",] test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] if("Functionality" %in% colnames(test)) { PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] } NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] #PRODF = PROD[ -1] PRODF = PROD #PRODF = unique(PRODF) PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) PRODFV$Length = as.numeric(PRODFV$Length) Total = 0 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) PRODFD$Length = as.numeric(PRODFD$Length) Total = 0 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) PRODFJ$Length = as.numeric(PRODFJ$Length) Total = 0 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) V = c("v.name\tchr.orderV\nTRBV1\t1\nTRBV2\t2\nTRBV3\t3\nTRBV4\t4\nTRBV5\t5\nTRBV12-1\t6\nTRBV13-1\t7\nTRBV12-2\t8\nTRBV13-2\t9\nTRBV13-3\t10\nTRBV14\t11\nTRBV15\t12\nTRBV16\t13\nTRBV17\t14\nTRBV19\t15\nTRBV20\t16\nTRBV23\t17\nTRBV24\t18\nTRBV26\t19\nTRBV29\t20\nTRBV30\t21\nTRBV31\t22\n") tcV = textConnection(V) Vchain = read.table(tcV, sep="\t", header=TRUE) PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) close(tcV) D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n") tcD = textConnection(D) Dchain = read.table(tcD, sep="\t", header=TRUE) PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) close(tcD) J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ2-1\t6\nTRBJ2-2\t7\nTRBJ2-3\t8\nTRBJ2-4\t9\nTRBJ2-5\t10\nTRBJ2-6\t11\nTRBJ2-7\t12\n") tcJ = textConnection(J) Jchain = read.table(tcJ, sep="\t", header=TRUE) PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) close(tcJ) setwd(outDir) write.table(PRODF, "allUnique.tsv", sep="\t",quote=F,row.names=F,col.names=T) pV = ggplot(PRODFV) pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") png("VPlot.png",width = 1280, height = 720) pV dev.off(); pD = ggplot(PRODFD) pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") png("DPlot.png",width = 800, height = 600) pD dev.off(); pJ = ggplot(PRODFJ) pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") png("JPlot.png",width = 800, height = 600) pJ dev.off(); revVchain = Vchain revDchain = Dchain revVchain$chr.orderV = rev(revVchain$chr.orderV) revDchain$chr.orderD = rev(revDchain$chr.orderD) cat("before VD", "\n") plotVD <- function(dat){ if(length(dat[,1]) == 0){ return() } img = ggplot() + geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + scale_fill_gradient(low="gold", high="blue", na.value="white") + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + xlab("D genes") + ylab("V Genes") png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) print(img) dev.off() } VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) VandDCount$l = log(VandDCount$Length) maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) VandDCount$relLength = VandDCount$l / VandDCount$max cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) VDList = split(completeVD, f=completeVD[,"Sample"]) lapply(VDList, FUN=plotVD) cat("after VD", "\n") cat("before VJ", "\n") plotVJ <- function(dat){ if(length(dat[,1]) == 0){ return() } img = ggplot() + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + scale_fill_gradient(low="gold", high="blue", na.value="white") + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + xlab("J genes") + ylab("V Genes") png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) print(img) dev.off() } VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) VandJCount$l = log(VandJCount$Length) maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) VandJCount$relLength = VandJCount$l / VandJCount$max cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) VJList = split(completeVJ, f=completeVJ[,"Sample"]) lapply(VJList, FUN=plotVJ) cat("after VJ", "\n") cat("before DJ", "\n") plotDJ <- function(dat){ if(length(dat[,1]) == 0){ return() } img = ggplot() + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + scale_fill_gradient(low="gold", high="blue", na.value="white") + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + xlab("J genes") + ylab("D Genes") png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) print(img) dev.off() } DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) DandJCount$l = log(DandJCount$Length) maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) DandJCount$relLength = DandJCount$l / DandJCount$max cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) DJList = split(completeDJ, f=completeDJ[,"Sample"]) lapply(DJList, FUN=plotDJ) cat("after DJ", "\n") sampleFile <- file("samples.txt") un = unique(test$Sample) un = paste(un, sep="\n") writeLines(un, sampleFile) close(sampleFile) if("Replicate" %in% colnames(test)) { clonalityFrame = PROD clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] write.table(clonalityFrame, "clonalityComplete.tsv", sep="\t",quote=F,row.names=F,col.names=T) ClonalitySampleReplicatePrint <- function(dat){ write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T) } clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) ClonalitySamplePrint <- function(dat){ write.table(dat, paste("clonality_", unique(dat$Sample) , ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T) } clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') tcct = textConnection(ct) CT = read.table(tcct, sep="\t", header=TRUE) close(tcct) clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads ReplicatePrint <- function(dat){ write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) } ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) lapply(ReplicateSplit, FUN=ReplicatePrint) ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) ReplicateSumPrint <- function(dat){ write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) } ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) ClonalityScorePrint <- function(dat){ write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) } clonalityScore = clonalFreqCount[c("Sample", "Result")] clonalityScore = unique(clonalityScore) clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] ClonalityOverviewPrint <- function(dat){ write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) } clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) } if("Functionality" %in% colnames(test)) { newData = data.frame(data.table(PROD)[,list(unique=.N, VH.DEL=mean(X3V.REGION.trimmed.nt.nb), P1=mean(P3V.nt.nb), N1=mean(N1.REGION.nt.nb), P2=mean(P5D.nt.nb), DEL.DH=mean(X5D.REGION.trimmed.nt.nb), DH.DEL=mean(X3D.REGION.trimmed.nt.nb), P3=mean(P3D.nt.nb), N2=mean(N2.REGION.nt.nb), P4=mean(P5J.nt.nb), DEL.JH=mean(X5J.REGION.trimmed.nt.nb), Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + mean(X5D.REGION.trimmed.nt.nb) + mean(X3D.REGION.trimmed.nt.nb) + mean(X5J.REGION.trimmed.nt.nb)), Total.N=( mean(N1.REGION.nt.nb) + mean(N2.REGION.nt.nb)), Total.P=( mean(P3V.nt.nb) + mean(P5D.nt.nb) + mean(P3D.nt.nb) + mean(P5J.nt.nb))), by=c("Sample")]) write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) }