Mercurial > repos > davidvanzessen > report_clonality_tcell_igg
comparison RScript.r @ 0:1d429107cd26 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 07 Mar 2014 05:42:31 -0500 |
parents | |
children | fd1b76816395 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1d429107cd26 |
---|---|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 inFile = args[1] | |
6 outFile = args[2] | |
7 outDir = args[3] | |
8 clonalType = args[4] | |
9 species = args[5] | |
10 | |
11 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
12 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
13 } | |
14 library(gridExtra) | |
15 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
16 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
17 } | |
18 require(ggplot2) | |
19 if (!("plyr" %in% rownames(installed.packages()))) { | |
20 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
21 } | |
22 require(plyr) | |
23 | |
24 if (!("data.table" %in% rownames(installed.packages()))) { | |
25 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
26 } | |
27 library(data.table) | |
28 | |
29 | |
30 test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") | |
31 | |
32 test = test[test$Sample != "",] | |
33 | |
34 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | |
35 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | |
36 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | |
37 | |
38 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) | |
39 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) | |
40 | |
41 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] | |
42 if("Functionality" %in% colnames(test)) { | |
43 PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] | |
44 } | |
45 | |
46 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] | |
47 | |
48 #PRODF = PROD[ -1] | |
49 | |
50 PRODF = PROD | |
51 | |
52 #PRODF = unique(PRODF) | |
53 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] | |
54 | |
55 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) | |
56 PRODFV$Length = as.numeric(PRODFV$Length) | |
57 Total = 0 | |
58 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
59 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
60 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
61 | |
62 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) | |
63 PRODFD$Length = as.numeric(PRODFD$Length) | |
64 Total = 0 | |
65 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
66 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
67 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
68 | |
69 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) | |
70 PRODFJ$Length = as.numeric(PRODFJ$Length) | |
71 Total = 0 | |
72 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
73 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
74 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
75 | |
76 V = c("v.name\tchr.orderV\nTRBV1\t1\nTRBV2\t2\nTRBV3\t3\nTRBV4\t4\nTRBV5\t5\nTRBV12-1\t6\nTRBV13-1\t7\nTRBV12-2\t8\nTRBV13-2\t9\nTRBV13-3\t10\nTRBV14\t11\nTRBV15\t12\nTRBV16\t13\nTRBV17\t14\nTRBV19\t15\nTRBV20\t16\nTRBV23\t17\nTRBV24\t18\nTRBV26\t19\nTRBV29\t20\nTRBV30\t21\nTRBV31\t22\n") | |
77 tcV = textConnection(V) | |
78 Vchain = read.table(tcV, sep="\t", header=TRUE) | |
79 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
80 close(tcV) | |
81 | |
82 D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n") | |
83 tcD = textConnection(D) | |
84 Dchain = read.table(tcD, sep="\t", header=TRUE) | |
85 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
86 close(tcD) | |
87 | |
88 | |
89 J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ2-1\t6\nTRBJ2-2\t7\nTRBJ2-3\t8\nTRBJ2-4\t9\nTRBJ2-5\t10\nTRBJ2-6\t11\nTRBJ2-7\t12\n") | |
90 tcJ = textConnection(J) | |
91 Jchain = read.table(tcJ, sep="\t", header=TRUE) | |
92 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
93 close(tcJ) | |
94 | |
95 setwd(outDir) | |
96 | |
97 write.table(PRODF, "allUnique.tsv", sep="\t",quote=F,row.names=F,col.names=T) | |
98 | |
99 pV = ggplot(PRODFV) | |
100 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
101 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | |
102 | |
103 png("VPlot.png",width = 1280, height = 720) | |
104 pV | |
105 dev.off(); | |
106 | |
107 pD = ggplot(PRODFD) | |
108 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
109 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | |
110 | |
111 png("DPlot.png",width = 800, height = 600) | |
112 pD | |
113 dev.off(); | |
114 | |
115 pJ = ggplot(PRODFJ) | |
116 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
117 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
118 | |
119 png("JPlot.png",width = 800, height = 600) | |
120 pJ | |
121 dev.off(); | |
122 | |
123 revVchain = Vchain | |
124 revDchain = Dchain | |
125 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
126 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
127 | |
128 cat("before VD", "\n") | |
129 | |
130 plotVD <- function(dat){ | |
131 if(length(dat[,1]) == 0){ | |
132 return() | |
133 } | |
134 img = ggplot() + | |
135 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
136 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
137 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
138 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
139 xlab("D genes") + | |
140 ylab("V Genes") | |
141 | |
142 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
143 print(img) | |
144 dev.off() | |
145 } | |
146 | |
147 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
148 | |
149 VandDCount$l = log(VandDCount$Length) | |
150 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
151 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
152 VandDCount$relLength = VandDCount$l / VandDCount$max | |
153 | |
154 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | |
155 | |
156 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | |
157 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
158 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
159 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
160 | |
161 lapply(VDList, FUN=plotVD) | |
162 | |
163 cat("after VD", "\n") | |
164 | |
165 cat("before VJ", "\n") | |
166 | |
167 plotVJ <- function(dat){ | |
168 if(length(dat[,1]) == 0){ | |
169 return() | |
170 } | |
171 img = ggplot() + | |
172 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
173 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
174 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
175 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
176 xlab("J genes") + | |
177 ylab("V Genes") | |
178 | |
179 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
180 print(img) | |
181 dev.off() | |
182 } | |
183 | |
184 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
185 | |
186 VandJCount$l = log(VandJCount$Length) | |
187 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
188 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
189 VandJCount$relLength = VandJCount$l / VandJCount$max | |
190 | |
191 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
192 | |
193 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
194 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
195 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
196 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
197 lapply(VJList, FUN=plotVJ) | |
198 | |
199 cat("after VJ", "\n") | |
200 | |
201 cat("before DJ", "\n") | |
202 | |
203 plotDJ <- function(dat){ | |
204 if(length(dat[,1]) == 0){ | |
205 return() | |
206 } | |
207 img = ggplot() + | |
208 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
209 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
210 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
211 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
212 xlab("J genes") + | |
213 ylab("D Genes") | |
214 | |
215 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
216 print(img) | |
217 dev.off() | |
218 } | |
219 | |
220 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
221 | |
222 DandJCount$l = log(DandJCount$Length) | |
223 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
224 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
225 DandJCount$relLength = DandJCount$l / DandJCount$max | |
226 | |
227 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
228 | |
229 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
230 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
231 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
232 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
233 lapply(DJList, FUN=plotDJ) | |
234 | |
235 cat("after DJ", "\n") | |
236 | |
237 sampleFile <- file("samples.txt") | |
238 un = unique(test$Sample) | |
239 un = paste(un, sep="\n") | |
240 writeLines(un, sampleFile) | |
241 close(sampleFile) | |
242 | |
243 | |
244 | |
245 if("Replicate" %in% colnames(test)) | |
246 { | |
247 clonalityFrame = PROD | |
248 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | |
249 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | |
250 write.table(clonalityFrame, "clonalityComplete.tsv", sep="\t",quote=F,row.names=F,col.names=T) | |
251 | |
252 ClonalitySampleReplicatePrint <- function(dat){ | |
253 write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
254 } | |
255 | |
256 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) | |
257 lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) | |
258 | |
259 ClonalitySamplePrint <- function(dat){ | |
260 write.table(dat, paste("clonality_", unique(dat$Sample) , ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
261 } | |
262 | |
263 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) | |
264 lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) | |
265 | |
266 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | |
267 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
268 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
269 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
270 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
271 | |
272 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
273 tcct = textConnection(ct) | |
274 CT = read.table(tcct, sep="\t", header=TRUE) | |
275 close(tcct) | |
276 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
277 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
278 | |
279 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | |
280 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
281 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | |
282 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | |
283 | |
284 ReplicatePrint <- function(dat){ | |
285 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
286 } | |
287 | |
288 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
289 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
290 | |
291 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | |
292 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
293 | |
294 | |
295 ReplicateSumPrint <- function(dat){ | |
296 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
297 } | |
298 | |
299 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
300 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
301 | |
302 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
303 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
304 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | |
305 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
306 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
307 | |
308 ClonalityScorePrint <- function(dat){ | |
309 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
310 } | |
311 | |
312 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
313 clonalityScore = unique(clonalityScore) | |
314 | |
315 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
316 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
317 | |
318 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
319 | |
320 | |
321 | |
322 ClonalityOverviewPrint <- function(dat){ | |
323 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
324 } | |
325 | |
326 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
327 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
328 } | |
329 | |
330 if("Functionality" %in% colnames(test)) | |
331 { | |
332 newData = data.frame(data.table(PROD)[,list(unique=.N, | |
333 VH.DEL=mean(X3V.REGION.trimmed.nt.nb), | |
334 P1=mean(P3V.nt.nb), | |
335 N1=mean(N1.REGION.nt.nb), | |
336 P2=mean(P5D.nt.nb), | |
337 DEL.DH=mean(X5D.REGION.trimmed.nt.nb), | |
338 DH.DEL=mean(X3D.REGION.trimmed.nt.nb), | |
339 P3=mean(P3D.nt.nb), | |
340 N2=mean(N2.REGION.nt.nb), | |
341 P4=mean(P5J.nt.nb), | |
342 DEL.JH=mean(X5J.REGION.trimmed.nt.nb), | |
343 Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + | |
344 mean(X5D.REGION.trimmed.nt.nb) + | |
345 mean(X3D.REGION.trimmed.nt.nb) + | |
346 mean(X5J.REGION.trimmed.nt.nb)), | |
347 | |
348 Total.N=( mean(N1.REGION.nt.nb) + | |
349 mean(N2.REGION.nt.nb)), | |
350 | |
351 Total.P=( mean(P3V.nt.nb) + | |
352 mean(P5D.nt.nb) + | |
353 mean(P3D.nt.nb) + | |
354 mean(P5J.nt.nb))), | |
355 by=c("Sample")]) | |
356 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
357 } |