0
|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
|
|
2
|
|
3 args <- commandArgs(trailingOnly = TRUE)
|
|
4
|
|
5 inFile = args[1]
|
|
6 outFile = args[2]
|
|
7 outDir = args[3]
|
|
8 clonalType = args[4]
|
|
9 species = args[5]
|
|
10
|
|
11 if (!("gridExtra" %in% rownames(installed.packages()))) {
|
|
12 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/")
|
|
13 }
|
|
14 library(gridExtra)
|
|
15 if (!("ggplot2" %in% rownames(installed.packages()))) {
|
|
16 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
|
|
17 }
|
|
18 require(ggplot2)
|
|
19 if (!("plyr" %in% rownames(installed.packages()))) {
|
|
20 install.packages("plyr", repos="http://cran.xl-mirror.nl/")
|
|
21 }
|
|
22 require(plyr)
|
|
23
|
|
24 if (!("data.table" %in% rownames(installed.packages()))) {
|
|
25 install.packages("data.table", repos="http://cran.xl-mirror.nl/")
|
|
26 }
|
|
27 library(data.table)
|
|
28
|
|
29
|
|
30 test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="")
|
|
31
|
|
32 test = test[test$Sample != "",]
|
|
33
|
|
34 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene)
|
|
35 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene)
|
|
36 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene)
|
|
37
|
|
38 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":"))
|
|
39 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":"))
|
|
40
|
|
41 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ]
|
|
42 if("Functionality" %in% colnames(test)) {
|
|
43 PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ]
|
|
44 }
|
|
45
|
|
46 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ]
|
|
47
|
|
48 #PRODF = PROD[ -1]
|
|
49
|
|
50 PRODF = PROD
|
|
51
|
|
52 #PRODF = unique(PRODF)
|
|
53 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ]
|
|
54
|
|
55 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")])
|
|
56 PRODFV$Length = as.numeric(PRODFV$Length)
|
|
57 Total = 0
|
|
58 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
|
|
59 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
|
|
60 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
|
|
61
|
|
62 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")])
|
|
63 PRODFD$Length = as.numeric(PRODFD$Length)
|
|
64 Total = 0
|
|
65 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
|
|
66 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
|
|
67 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
|
|
68
|
|
69 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")])
|
|
70 PRODFJ$Length = as.numeric(PRODFJ$Length)
|
|
71 Total = 0
|
|
72 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
|
|
73 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
|
|
74 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
|
|
75
|
|
76 V = c("v.name\tchr.orderV\nTRBV1\t1\nTRBV2\t2\nTRBV3\t3\nTRBV4\t4\nTRBV5\t5\nTRBV12-1\t6\nTRBV13-1\t7\nTRBV12-2\t8\nTRBV13-2\t9\nTRBV13-3\t10\nTRBV14\t11\nTRBV15\t12\nTRBV16\t13\nTRBV17\t14\nTRBV19\t15\nTRBV20\t16\nTRBV23\t17\nTRBV24\t18\nTRBV26\t19\nTRBV29\t20\nTRBV30\t21\nTRBV31\t22\n")
|
|
77 tcV = textConnection(V)
|
|
78 Vchain = read.table(tcV, sep="\t", header=TRUE)
|
|
79 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
|
|
80 close(tcV)
|
|
81
|
|
82 D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n")
|
|
83 tcD = textConnection(D)
|
|
84 Dchain = read.table(tcD, sep="\t", header=TRUE)
|
|
85 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
|
|
86 close(tcD)
|
|
87
|
|
88
|
|
89 J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ2-1\t6\nTRBJ2-2\t7\nTRBJ2-3\t8\nTRBJ2-4\t9\nTRBJ2-5\t10\nTRBJ2-6\t11\nTRBJ2-7\t12\n")
|
|
90 tcJ = textConnection(J)
|
|
91 Jchain = read.table(tcJ, sep="\t", header=TRUE)
|
|
92 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
|
|
93 close(tcJ)
|
|
94
|
|
95 setwd(outDir)
|
|
96
|
|
97 write.table(PRODF, "allUnique.tsv", sep="\t",quote=F,row.names=F,col.names=T)
|
|
98
|
|
99 pV = ggplot(PRODFV)
|
|
100 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
101 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage")
|
|
102
|
|
103 png("VPlot.png",width = 1280, height = 720)
|
|
104 pV
|
|
105 dev.off();
|
|
106
|
|
107 pD = ggplot(PRODFD)
|
|
108 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
109 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
|
|
110
|
|
111 png("DPlot.png",width = 800, height = 600)
|
|
112 pD
|
|
113 dev.off();
|
|
114
|
|
115 pJ = ggplot(PRODFJ)
|
|
116 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
117 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
|
|
118
|
|
119 png("JPlot.png",width = 800, height = 600)
|
|
120 pJ
|
|
121 dev.off();
|
|
122
|
|
123 revVchain = Vchain
|
|
124 revDchain = Dchain
|
|
125 revVchain$chr.orderV = rev(revVchain$chr.orderV)
|
|
126 revDchain$chr.orderD = rev(revDchain$chr.orderD)
|
|
127
|
|
128 cat("before VD", "\n")
|
|
129
|
|
130 plotVD <- function(dat){
|
|
131 if(length(dat[,1]) == 0){
|
|
132 return()
|
|
133 }
|
|
134 img = ggplot() +
|
|
135 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
|
|
136 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
137 scale_fill_gradient(low="gold", high="blue", na.value="white") +
|
|
138 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
|
|
139 xlab("D genes") +
|
|
140 ylab("V Genes")
|
|
141
|
|
142 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
|
|
143 print(img)
|
|
144 dev.off()
|
|
145 }
|
|
146
|
|
147 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
|
|
148
|
|
149 VandDCount$l = log(VandDCount$Length)
|
|
150 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
|
|
151 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
|
|
152 VandDCount$relLength = VandDCount$l / VandDCount$max
|
|
153
|
|
154 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample))
|
|
155
|
|
156 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
|
|
157 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
|
|
158 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
|
|
159 VDList = split(completeVD, f=completeVD[,"Sample"])
|
|
160
|
|
161 lapply(VDList, FUN=plotVD)
|
|
162
|
|
163 cat("after VD", "\n")
|
|
164
|
|
165 cat("before VJ", "\n")
|
|
166
|
|
167 plotVJ <- function(dat){
|
|
168 if(length(dat[,1]) == 0){
|
|
169 return()
|
|
170 }
|
|
171 img = ggplot() +
|
|
172 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
|
|
173 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
174 scale_fill_gradient(low="gold", high="blue", na.value="white") +
|
|
175 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
|
|
176 xlab("J genes") +
|
|
177 ylab("V Genes")
|
|
178
|
|
179 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
|
|
180 print(img)
|
|
181 dev.off()
|
|
182 }
|
|
183
|
|
184 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
|
|
185
|
|
186 VandJCount$l = log(VandJCount$Length)
|
|
187 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
|
|
188 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
|
|
189 VandJCount$relLength = VandJCount$l / VandJCount$max
|
|
190
|
|
191 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
|
|
192
|
|
193 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
|
|
194 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
|
|
195 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
|
|
196 VJList = split(completeVJ, f=completeVJ[,"Sample"])
|
|
197 lapply(VJList, FUN=plotVJ)
|
|
198
|
|
199 cat("after VJ", "\n")
|
|
200
|
|
201 cat("before DJ", "\n")
|
|
202
|
|
203 plotDJ <- function(dat){
|
|
204 if(length(dat[,1]) == 0){
|
|
205 return()
|
|
206 }
|
|
207 img = ggplot() +
|
|
208 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) +
|
|
209 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
210 scale_fill_gradient(low="gold", high="blue", na.value="white") +
|
|
211 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
|
|
212 xlab("J genes") +
|
|
213 ylab("D Genes")
|
|
214
|
|
215 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
|
|
216 print(img)
|
|
217 dev.off()
|
|
218 }
|
|
219
|
|
220 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
|
|
221
|
|
222 DandJCount$l = log(DandJCount$Length)
|
|
223 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
|
|
224 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
|
|
225 DandJCount$relLength = DandJCount$l / DandJCount$max
|
|
226
|
|
227 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
|
|
228
|
|
229 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
|
|
230 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
|
|
231 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
|
|
232 DJList = split(completeDJ, f=completeDJ[,"Sample"])
|
|
233 lapply(DJList, FUN=plotDJ)
|
|
234
|
|
235 cat("after DJ", "\n")
|
|
236
|
|
237 sampleFile <- file("samples.txt")
|
|
238 un = unique(test$Sample)
|
|
239 un = paste(un, sep="\n")
|
|
240 writeLines(un, sampleFile)
|
|
241 close(sampleFile)
|
|
242
|
|
243
|
|
244
|
|
245 if("Replicate" %in% colnames(test))
|
|
246 {
|
|
247 clonalityFrame = PROD
|
|
248 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":"))
|
|
249 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ]
|
|
250 write.table(clonalityFrame, "clonalityComplete.tsv", sep="\t",quote=F,row.names=F,col.names=T)
|
|
251
|
|
252 ClonalitySampleReplicatePrint <- function(dat){
|
|
253 write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
|
|
254 }
|
|
255
|
|
256 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")])
|
|
257 lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint)
|
|
258
|
|
259 ClonalitySamplePrint <- function(dat){
|
|
260 write.table(dat, paste("clonality_", unique(dat$Sample) , ".tsv", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
|
|
261 }
|
|
262
|
|
263 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"])
|
|
264 lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint)
|
|
265
|
|
266 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")])
|
|
267 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
|
|
268 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
|
|
269 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
|
|
270 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
|
|
271
|
|
272 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
|
|
273 tcct = textConnection(ct)
|
|
274 CT = read.table(tcct, sep="\t", header=TRUE)
|
|
275 close(tcct)
|
|
276 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
|
|
277 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
|
|
278
|
|
279 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")])
|
|
280 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
|
|
281 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
|
|
282 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
|
|
283
|
|
284 ReplicatePrint <- function(dat){
|
|
285 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
286 }
|
|
287
|
|
288 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
|
|
289 lapply(ReplicateSplit, FUN=ReplicatePrint)
|
|
290
|
|
291 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")])
|
|
292 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
|
|
293
|
|
294
|
|
295 ReplicateSumPrint <- function(dat){
|
|
296 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
297 }
|
|
298
|
|
299 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
|
|
300 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
|
|
301
|
|
302 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
|
|
303 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
|
|
304 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
|
|
305 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
|
|
306 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
|
|
307
|
|
308 ClonalityScorePrint <- function(dat){
|
|
309 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
310 }
|
|
311
|
|
312 clonalityScore = clonalFreqCount[c("Sample", "Result")]
|
|
313 clonalityScore = unique(clonalityScore)
|
|
314
|
|
315 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
|
|
316 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
|
|
317
|
|
318 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
|
|
319
|
|
320
|
|
321
|
|
322 ClonalityOverviewPrint <- function(dat){
|
|
323 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
324 }
|
|
325
|
|
326 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
|
|
327 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
|
|
328 }
|
|
329
|
|
330 if("Functionality" %in% colnames(test))
|
|
331 {
|
|
332 newData = data.frame(data.table(PROD)[,list(unique=.N,
|
|
333 VH.DEL=mean(X3V.REGION.trimmed.nt.nb),
|
|
334 P1=mean(P3V.nt.nb),
|
|
335 N1=mean(N1.REGION.nt.nb),
|
|
336 P2=mean(P5D.nt.nb),
|
|
337 DEL.DH=mean(X5D.REGION.trimmed.nt.nb),
|
|
338 DH.DEL=mean(X3D.REGION.trimmed.nt.nb),
|
|
339 P3=mean(P3D.nt.nb),
|
|
340 N2=mean(N2.REGION.nt.nb),
|
|
341 P4=mean(P5J.nt.nb),
|
|
342 DEL.JH=mean(X5J.REGION.trimmed.nt.nb),
|
|
343 Total.Del=( mean(X3V.REGION.trimmed.nt.nb) +
|
|
344 mean(X5D.REGION.trimmed.nt.nb) +
|
|
345 mean(X3D.REGION.trimmed.nt.nb) +
|
|
346 mean(X5J.REGION.trimmed.nt.nb)),
|
|
347
|
|
348 Total.N=( mean(N1.REGION.nt.nb) +
|
|
349 mean(N2.REGION.nt.nb)),
|
|
350
|
|
351 Total.P=( mean(P3V.nt.nb) +
|
|
352 mean(P5D.nt.nb) +
|
|
353 mean(P3D.nt.nb) +
|
|
354 mean(P5J.nt.nb))),
|
|
355 by=c("Sample")])
|
|
356 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
357 }
|