0
|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
|
|
2
|
|
3 args <- commandArgs(trailingOnly = TRUE)
|
|
4
|
|
5 inFile = args[1]
|
|
6 outFile = args[2]
|
|
7 outDir = args[3]
|
|
8 clonalType = args[4]
|
3
|
9 species = args[5]
|
|
10 locus = args[6]
|
|
11 selection = args[7]
|
0
|
12
|
|
13 if (!("gridExtra" %in% rownames(installed.packages()))) {
|
|
14 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/")
|
|
15 }
|
|
16 library(gridExtra)
|
|
17 if (!("ggplot2" %in% rownames(installed.packages()))) {
|
|
18 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
|
|
19 }
|
|
20 require(ggplot2)
|
|
21 if (!("plyr" %in% rownames(installed.packages()))) {
|
|
22 install.packages("plyr", repos="http://cran.xl-mirror.nl/")
|
|
23 }
|
|
24 require(plyr)
|
|
25
|
|
26 if (!("data.table" %in% rownames(installed.packages()))) {
|
|
27 install.packages("data.table", repos="http://cran.xl-mirror.nl/")
|
|
28 }
|
|
29 library(data.table)
|
|
30
|
2
|
31 if (!("reshape2" %in% rownames(installed.packages()))) {
|
|
32 install.packages("reshape2", repos="http://cran.xl-mirror.nl/")
|
|
33 }
|
|
34 library(reshape2)
|
|
35
|
0
|
36
|
|
37 test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="")
|
|
38
|
|
39 test = test[test$Sample != "",]
|
|
40
|
2
|
41
|
|
42
|
0
|
43 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene)
|
|
44 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene)
|
|
45 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene)
|
|
46
|
|
47 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":"))
|
|
48 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":"))
|
|
49
|
|
50 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ]
|
|
51 if("Functionality" %in% colnames(test)) {
|
|
52 PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ]
|
|
53 }
|
|
54
|
|
55 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ]
|
|
56
|
|
57 #PRODF = PROD[ -1]
|
|
58
|
|
59 PRODF = PROD
|
|
60
|
|
61 #PRODF = unique(PRODF)
|
2
|
62 if(any(grepl(pattern="_", x=PRODF$ID))){
|
0
|
63
|
2
|
64 PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID)
|
|
65 PRODF$freq = gsub("_.*", "", PRODF$freq)
|
|
66 PRODF$freq = as.numeric(PRODF$freq)
|
|
67 } else {
|
|
68 PRODF$freq = 1
|
3
|
69 if(selection == "unique"){
|
|
70 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ]
|
|
71 }
|
2
|
72 }
|
|
73
|
|
74 PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")])
|
0
|
75 PRODFV$Length = as.numeric(PRODFV$Length)
|
|
76 Total = 0
|
|
77 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
|
|
78 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
|
|
79 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
|
|
80
|
2
|
81 PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")])
|
0
|
82 PRODFD$Length = as.numeric(PRODFD$Length)
|
|
83 Total = 0
|
|
84 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
|
|
85 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
|
|
86 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
|
|
87
|
2
|
88 PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")])
|
0
|
89 PRODFJ$Length = as.numeric(PRODFJ$Length)
|
|
90 Total = 0
|
|
91 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
|
|
92 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
|
|
93 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
|
|
94
|
3
|
95 V = c("v.name\tchr.orderV\n")
|
|
96 D = c("v.name\tchr.orderD\n")
|
|
97 J = c("v.name\tchr.orderJ\n")
|
|
98
|
|
99 if(species == "human"){
|
|
100 if(locus == "trb"){
|
|
101 V = c("v.name\tchr.orderV\nTRBV2\t1\nTRBV3-1\t2\nTRBV4-1\t3\nTRBV5-1\t4\nTRBV6-1\t5\nTRBV4-2\t6\nTRBV6-2\t7\nTRBV4-3\t8\nTRBV6-3\t9\nTRBV7-2\t10\nTRBV6-4\t11\nTRBV7-3\t12\nTRBV9\t13\nTRBV10-1\t14\nTRBV11-1\t15\nTRBV10-2\t16\nTRBV11-2\t17\nTRBV6-5\t18\nTRBV7-4\t19\nTRBV5-4\t20\nTRBV6-6\t21\nTRBV5-5\t22\nTRBV7-6\t23\nTRBV5-6\t24\nTRBV6-8\t25\nTRBV7-7\t26\nTRBV6-9\t27\nTRBV7-8\t28\nTRBV5-8\t29\nTRBV7-9\t30\nTRBV13\t31\nTRBV10-3\t32\nTRBV11-3\t33\nTRBV12-3\t34\nTRBV12-4\t35\nTRBV12-5\t36\nTRBV14\t37\nTRBV15\t38\nTRBV16\t39\nTRBV18\t40\nTRBV19\t41\nTRBV20-1\t42\nTRBV24-1\t43\nTRBV25-1\t44\nTRBV27\t45\nTRBV28\t46\nTRBV29-1\t47\nTRBV30\t48")
|
|
102 D = c("v.name\tchr.orderD\nTRBD1\t1\nTRBD2\t2\n")
|
|
103 J = c("v.name\tchr.orderJ\nTRBJ1-1\t1\nTRBJ1-2\t2\nTRBJ1-3\t3\nTRBJ1-4\t4\nTRBJ1-5\t5\nTRBJ1-6\t6\nTRBJ2-1\t7\nTRBJ2-2\t8\nTRBJ2-3\t9\nTRBJ2-4\t10\nTRBJ2-5\t11\nTRBJ2-6\t12\nTRBJ2-7\t13")
|
|
104 } else if (locus == "tra"){
|
|
105 V = c("v.name\tchr.orderVTRAV1-1\t1\nTRAV1-2\t2\nTRAV2\t3\nTRAV3\t4\nTRAV4\t5\nTRAV5\t6\nTRAV6\t7\nTRAV7\t8\nTRAV8-1\t9\nTRAV9-1\t10\nTRAV10\t11\nTRAV12-1\t12\nTRAV8-2\t13\nTRAV8-3\t14\nTRAV13-1\t15\nTRAV12-2\t16\nTRAV8-4\t17\nTRAV13-2\t18\nTRAV14/DV4\t19\nTRAV9-2\t20\nTRAV12-3\t21\nTRAV8-6\t22\nTRAV16\t23\nTRAV17\t24\nTRAV18\t25\nTRAV19\t26\nTRAV20\t27\nTRAV21\t28\nTRAV22\t29\nTRAV23/DV6\t30\nTRAV24\t31\nTRAV25\t32\nTRAV26-1\t33\nTRAV27\t34\nTRAV29/DV5\t35\nTRAV30\t36\nTRAV26-2\t37\nTRAV34\t38\nTRAV35\t39\nTRAV36/DV7\t40\nTRAV38-1\t41\nTRAV38-2/DV8\t42\nTRAV39\t43\nTRAV40\t44\nTRAV41\t45\n")
|
|
106 D = c("v.name\tchr.orderD\n")
|
|
107 J = c("v.name\tchr.orderJ\nTRAJ57\t1\nTRAJ56\t2\nTRAJ54\t3\nTRAJ53\t4\nTRAJ52\t5\nTRAJ50\t6\nTRAJ49\t7\nTRAJ48\t8\nTRAJ47\t9\nTRAJ46\t10\nTRAJ45\t11\nTRAJ44\t12\nTRAJ43\t13\nTRAJ42\t14\nTRAJ41\t15\nTRAJ40\t16\nTRAJ39\t17\nTRAJ38\t18\nTRAJ37\t19\nTRAJ36\t20\nTRAJ34\t21\nTRAJ33\t22\nTRAJ32\t23\nTRAJ31\t24\nTRAJ30\t25\nTRAJ29\t26\nTRAJ28\t27\nTRAJ27\t28\nTRAJ26\t29\nTRAJ24\t30\nTRAJ23\t31\nTRAJ22\t32\nTRAJ21\t33\nTRAJ20\t34\nTRAJ18\t35\nTRAJ17\t36\nTRAJ16\t37\nTRAJ15\t38\nTRAJ14\t39\nTRAJ13\t40\nTRAJ12\t41\nTRAJ11\t42\nTRAJ10\t43\nTRAJ9\t44\nTRAJ8\t45\nTRAJ7\t46\nTRAJ6\t47\nTRAJ5\t48\nTRAJ4\t49\nTRAJ3\t50")
|
|
108 } else if (locus == "trg"){
|
4
|
109 V = c("v.name\tchr.orderV\nTRGV9\t1\nTRGV8\t2\nTRGV5\t3\nTRGV4\t4\nTRGV3\t5\nTRGV2\t6")
|
|
110 D = c("v.name\tchr.orderD\n")
|
|
111 J = c("v.name\tchr.orderJ\nTRGJ2\t1\nTRGJP2\t2\nTRGJ1\t3\nTRGJP1\t4")
|
3
|
112 } else if (locus == "trd"){
|
4
|
113 V = c("v.name\tchr.orderV\nTRDV1\t1\nTRDV2\t2\nTRDV3\t3")
|
|
114 D = c("v.name\tchr.orderD\nTRDD1\t1\nTRDD2\t2\nTRDD3\t3")
|
|
115 J = c("v.name\tchr.orderJ\nTRDJ1\t1\nTRDJ4\t2\nTRDJ2\t3\nTRDJ3\t4")
|
3
|
116 }
|
|
117 } else if (species == "mouse"){
|
|
118 if(locus == "trb"){
|
|
119 cat("mouse trb not yet implemented")
|
|
120 } else if (locus == "tra"){
|
|
121 cat("mouse tra not yet implemented")
|
|
122 } else if (locus == "trg"){
|
|
123 cat("mouse trg not yet implemented")
|
|
124 } else if (locus == "trd"){
|
|
125 cat("mouse trd not yet implemented")
|
|
126 }
|
|
127 }
|
|
128 useD = TRUE
|
|
129 if(species == "human" && locus == "tra"){
|
|
130 useD = FALSE
|
|
131 cat("No D Genes in this species/locus")
|
|
132 }
|
|
133
|
|
134
|
0
|
135 tcV = textConnection(V)
|
|
136 Vchain = read.table(tcV, sep="\t", header=TRUE)
|
|
137 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
|
|
138 close(tcV)
|
|
139
|
3
|
140
|
0
|
141 tcD = textConnection(D)
|
|
142 Dchain = read.table(tcD, sep="\t", header=TRUE)
|
|
143 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
|
|
144 close(tcD)
|
|
145
|
|
146
|
3
|
147
|
0
|
148 tcJ = textConnection(J)
|
|
149 Jchain = read.table(tcJ, sep="\t", header=TRUE)
|
|
150 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
|
|
151 close(tcJ)
|
|
152
|
|
153 setwd(outDir)
|
|
154
|
2
|
155 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T)
|
0
|
156
|
|
157 pV = ggplot(PRODFV)
|
|
158 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
159 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage")
|
2
|
160 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
|
0
|
161
|
|
162 png("VPlot.png",width = 1280, height = 720)
|
|
163 pV
|
|
164 dev.off();
|
|
165
|
|
166 pD = ggplot(PRODFD)
|
|
167 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
168 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
|
2
|
169 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
|
0
|
170
|
|
171 png("DPlot.png",width = 800, height = 600)
|
|
172 pD
|
|
173 dev.off();
|
|
174
|
|
175 pJ = ggplot(PRODFJ)
|
|
176 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
177 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
|
2
|
178 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
|
0
|
179
|
|
180 png("JPlot.png",width = 800, height = 600)
|
|
181 pJ
|
|
182 dev.off();
|
|
183
|
2
|
184 VGenes = PRODF[,c("Sample", "Top.V.Gene", "freq")]
|
|
185 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
|
|
186 VGenes = data.frame(data.table(VGenes)[, list(Count=sum(freq)), by=c("Sample", "Top.V.Gene")])
|
|
187 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample])
|
|
188 VGenes = merge(VGenes, TotalPerSample, by="Sample")
|
|
189 VGenes$Frequency = VGenes$Count * 100 / VGenes$total
|
|
190 VPlot = ggplot(VGenes)
|
|
191 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
192 ggtitle("Distribution of V gene families") +
|
|
193 ylab("Percentage of sequences")
|
|
194 png("VFPlot.png")
|
|
195 VPlot
|
|
196 dev.off();
|
|
197 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
|
|
198
|
|
199 DGenes = PRODF[,c("Sample", "Top.D.Gene", "freq")]
|
|
200 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
|
|
201 DGenes = data.frame(data.table(DGenes)[, list(Count=sum(freq)), by=c("Sample", "Top.D.Gene")])
|
|
202 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
|
|
203 DGenes = merge(DGenes, TotalPerSample, by="Sample")
|
|
204 DGenes$Frequency = DGenes$Count * 100 / DGenes$total
|
|
205 DPlot = ggplot(DGenes)
|
|
206 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
207 ggtitle("Distribution of D gene families") +
|
|
208 ylab("Percentage of sequences")
|
|
209 png("DFPlot.png")
|
|
210 DPlot
|
|
211 dev.off();
|
|
212 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
|
|
213
|
|
214 JGenes = PRODF[,c("Sample", "Top.J.Gene", "freq")]
|
|
215 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene)
|
|
216 JGenes = data.frame(data.table(JGenes)[, list(Count=sum(freq)), by=c("Sample", "Top.J.Gene")])
|
|
217 TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample])
|
|
218 JGenes = merge(JGenes, TotalPerSample, by="Sample")
|
|
219 JGenes$Frequency = JGenes$Count * 100 / JGenes$total
|
|
220 JPlot = ggplot(JGenes)
|
|
221 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
222 ggtitle("Distribution of J gene families") +
|
|
223 ylab("Percentage of sequences")
|
|
224 png("JFPlot.png")
|
|
225 JPlot
|
|
226 dev.off();
|
|
227 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
|
|
228
|
|
229 CDR3Length = data.frame(data.table(PRODF)[, list(Count=sum(freq)), by=c("Sample", "CDR3.Length.DNA")])
|
|
230 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
|
|
231 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
|
|
232 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
|
|
233 CDR3LengthPlot = ggplot(CDR3Length)
|
|
234 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
235 ggtitle("Length distribution of CDR3") +
|
|
236 xlab("CDR3 Length") +
|
|
237 ylab("Percentage of sequences")
|
|
238 png("CDR3LengthPlot.png",width = 1280, height = 720)
|
|
239 CDR3LengthPlot
|
|
240 dev.off()
|
|
241 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
|
|
242
|
0
|
243 revVchain = Vchain
|
|
244 revDchain = Dchain
|
|
245 revVchain$chr.orderV = rev(revVchain$chr.orderV)
|
|
246 revDchain$chr.orderD = rev(revDchain$chr.orderD)
|
|
247
|
3
|
248
|
0
|
249 plotVD <- function(dat){
|
|
250 if(length(dat[,1]) == 0){
|
|
251 return()
|
|
252 }
|
|
253 img = ggplot() +
|
|
254 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
|
|
255 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
256 scale_fill_gradient(low="gold", high="blue", na.value="white") +
|
|
257 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
|
|
258 xlab("D genes") +
|
|
259 ylab("V Genes")
|
|
260
|
|
261 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
|
|
262 print(img)
|
2
|
263
|
0
|
264 dev.off()
|
2
|
265 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
|
0
|
266 }
|
|
267
|
2
|
268 VandDCount = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
|
0
|
269
|
|
270 VandDCount$l = log(VandDCount$Length)
|
|
271 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
|
|
272 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
|
|
273 VandDCount$relLength = VandDCount$l / VandDCount$max
|
|
274
|
|
275 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample))
|
|
276
|
|
277 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
|
|
278 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
|
|
279 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
|
|
280 VDList = split(completeVD, f=completeVD[,"Sample"])
|
|
281
|
|
282 lapply(VDList, FUN=plotVD)
|
|
283
|
|
284 plotVJ <- function(dat){
|
|
285 if(length(dat[,1]) == 0){
|
|
286 return()
|
|
287 }
|
|
288 img = ggplot() +
|
|
289 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) +
|
|
290 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
291 scale_fill_gradient(low="gold", high="blue", na.value="white") +
|
|
292 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
|
|
293 xlab("J genes") +
|
|
294 ylab("V Genes")
|
|
295
|
|
296 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
|
|
297 print(img)
|
|
298 dev.off()
|
2
|
299 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
|
0
|
300 }
|
|
301
|
2
|
302 VandJCount = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
|
0
|
303
|
|
304 VandJCount$l = log(VandJCount$Length)
|
|
305 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
|
|
306 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
|
|
307 VandJCount$relLength = VandJCount$l / VandJCount$max
|
|
308
|
|
309 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
|
|
310
|
|
311 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
|
|
312 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
|
|
313 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
|
|
314 VJList = split(completeVJ, f=completeVJ[,"Sample"])
|
|
315 lapply(VJList, FUN=plotVJ)
|
|
316
|
|
317 plotDJ <- function(dat){
|
|
318 if(length(dat[,1]) == 0){
|
|
319 return()
|
|
320 }
|
|
321 img = ggplot() +
|
|
322 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) +
|
|
323 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
|
|
324 scale_fill_gradient(low="gold", high="blue", na.value="white") +
|
|
325 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) +
|
|
326 xlab("J genes") +
|
|
327 ylab("D Genes")
|
|
328
|
|
329 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
|
|
330 print(img)
|
|
331 dev.off()
|
2
|
332 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
|
0
|
333 }
|
|
334
|
|
335 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
|
|
336
|
|
337 DandJCount$l = log(DandJCount$Length)
|
|
338 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
|
|
339 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
|
|
340 DandJCount$relLength = DandJCount$l / DandJCount$max
|
|
341
|
|
342 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
|
|
343
|
|
344 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
|
|
345 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
|
|
346 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
|
|
347 DJList = split(completeDJ, f=completeDJ[,"Sample"])
|
|
348 lapply(DJList, FUN=plotDJ)
|
|
349
|
|
350 sampleFile <- file("samples.txt")
|
|
351 un = unique(test$Sample)
|
|
352 un = paste(un, sep="\n")
|
|
353 writeLines(un, sampleFile)
|
|
354 close(sampleFile)
|
|
355
|
|
356
|
|
357 if("Replicate" %in% colnames(test))
|
|
358 {
|
|
359 clonalityFrame = PROD
|
|
360 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":"))
|
|
361 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ]
|
2
|
362 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
|
0
|
363
|
|
364 ClonalitySampleReplicatePrint <- function(dat){
|
2
|
365 write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
|
0
|
366 }
|
|
367
|
|
368 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")])
|
2
|
369 #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint)
|
0
|
370
|
|
371 ClonalitySamplePrint <- function(dat){
|
2
|
372 write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
|
0
|
373 }
|
|
374
|
|
375 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"])
|
2
|
376 #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint)
|
0
|
377
|
|
378 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")])
|
|
379 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
|
|
380 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
|
|
381 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
|
|
382 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
|
|
383
|
|
384 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
|
|
385 tcct = textConnection(ct)
|
|
386 CT = read.table(tcct, sep="\t", header=TRUE)
|
|
387 close(tcct)
|
|
388 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
|
|
389 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
|
|
390
|
|
391 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")])
|
|
392 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
|
|
393 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
|
|
394 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
|
|
395
|
|
396 ReplicatePrint <- function(dat){
|
|
397 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
398 }
|
|
399
|
|
400 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
|
|
401 lapply(ReplicateSplit, FUN=ReplicatePrint)
|
|
402
|
|
403 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")])
|
|
404 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
|
|
405
|
|
406
|
|
407 ReplicateSumPrint <- function(dat){
|
|
408 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
409 }
|
|
410
|
|
411 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
|
|
412 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
|
|
413
|
|
414 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
|
|
415 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
|
|
416 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
|
|
417 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
|
|
418 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
|
|
419
|
|
420 ClonalityScorePrint <- function(dat){
|
|
421 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
422 }
|
|
423
|
|
424 clonalityScore = clonalFreqCount[c("Sample", "Result")]
|
|
425 clonalityScore = unique(clonalityScore)
|
|
426
|
|
427 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
|
|
428 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
|
|
429
|
|
430 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
|
|
431
|
|
432
|
|
433
|
|
434 ClonalityOverviewPrint <- function(dat){
|
|
435 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
436 }
|
|
437
|
|
438 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
|
|
439 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
|
|
440 }
|
|
441
|
|
442 if("Functionality" %in% colnames(test))
|
|
443 {
|
|
444 newData = data.frame(data.table(PROD)[,list(unique=.N,
|
|
445 VH.DEL=mean(X3V.REGION.trimmed.nt.nb),
|
|
446 P1=mean(P3V.nt.nb),
|
|
447 N1=mean(N1.REGION.nt.nb),
|
|
448 P2=mean(P5D.nt.nb),
|
|
449 DEL.DH=mean(X5D.REGION.trimmed.nt.nb),
|
|
450 DH.DEL=mean(X3D.REGION.trimmed.nt.nb),
|
|
451 P3=mean(P3D.nt.nb),
|
|
452 N2=mean(N2.REGION.nt.nb),
|
|
453 P4=mean(P5J.nt.nb),
|
|
454 DEL.JH=mean(X5J.REGION.trimmed.nt.nb),
|
|
455 Total.Del=( mean(X3V.REGION.trimmed.nt.nb) +
|
|
456 mean(X5D.REGION.trimmed.nt.nb) +
|
|
457 mean(X3D.REGION.trimmed.nt.nb) +
|
|
458 mean(X5J.REGION.trimmed.nt.nb)),
|
|
459
|
|
460 Total.N=( mean(N1.REGION.nt.nb) +
|
|
461 mean(N2.REGION.nt.nb)),
|
|
462
|
|
463 Total.P=( mean(P3V.nt.nb) +
|
|
464 mean(P5D.nt.nb) +
|
|
465 mean(P3D.nt.nb) +
|
|
466 mean(P5J.nt.nb))),
|
|
467 by=c("Sample")])
|
|
468 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
|
|
469 }
|