changeset 114:e7b550d52eb7 draft

Uploaded
author davidvanzessen
date Tue, 09 Aug 2016 07:20:41 -0400
parents b84477f57318
children ede6c4ee5196
files baseline/Baseline_Functions.r baseline/Baseline_Main.r baseline/FiveS_Mutability.RData baseline/FiveS_Substitution.RData baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa baseline/comparePDFs.r baseline/filter.r baseline/script_imgt.py baseline/script_xlsx.py baseline/wrapper.sh datatypes_conf.xml merge_and_filter.r mutation_analysis.r mutation_analysis.xml naive_output.r new_imgt.r tmp/IgAT.xlsm tmp/baseline/Baseline_Functions.r tmp/baseline/Baseline_Main.r tmp/baseline/FiveS_Mutability.RData tmp/baseline/FiveS_Substitution.RData tmp/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa tmp/baseline/comparePDFs.r tmp/baseline/filter.r tmp/baseline/script_imgt.py tmp/baseline/script_xlsx.py tmp/baseline/wrapper.sh tmp/igat.r tool_dependencies.xml wrapper.sh
diffstat 30 files changed, 4112 insertions(+), 4072 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/Baseline_Functions.r	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,2287 @@
+#########################################################################################
+# License Agreement
+# 
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
+# OR COPYRIGHT LAW IS PROHIBITED.
+# 
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+# Global variables  
+  
+  FILTER_BY_MUTATIONS = 1000
+
+  # Nucleotides
+  NUCLEOTIDES = c("A","C","G","T")
+  
+  # Amino Acids
+  AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
+  names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
+  names(AMINO_ACIDS) <- names(AMINO_ACIDS)
+
+  #Amino Acid Traits
+  #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
+  #B = "Hydrophobic/Burried"  N = "Intermediate/Neutral"  S="Hydrophilic/Surface") 
+  TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
+  names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
+  TRAITS_AMINO_ACIDS <- array(NA,21)
+  
+  # Codon Table
+  CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
+
+  # Substitution Model: Smith DS et al. 1996
+  substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
+  load("FiveS_Substitution.RData")
+
+  # Mutability Models: Shapiro GS et al. 2002
+  triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
+  triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
+  triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
+  load("FiveS_Mutability.RData")
+
+# Functions
+  
+  # Translate codon to amino acid
+  translateCodonToAminoAcid<-function(Codon){
+     return(AMINO_ACIDS[Codon])
+  }
+
+  # Translate amino acid to trait change
+  translateAminoAcidToTraitChange<-function(AminoAcid){
+     return(TRAITS_AMINO_ACIDS[AminoAcid])
+  }
+    
+  # Initialize Amino Acid Trait Changes
+  initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
+    if(!is.null(traitChangeFileName)){
+      tryCatch(
+          traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
+          , error = function(ex){
+            cat("Error|Error reading trait changes. Please check file name/path and format.\n")
+            q()
+          }
+        )
+    }else{
+      traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
+    }
+    TRAITS_AMINO_ACIDS <<- traitChange
+ } 
+  
+  # Read in formatted nucleotide substitution matrix
+  initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
+    if(!is.null(subsMatFileName)){
+      tryCatch(
+          subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
+          , error = function(ex){
+            cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
+            q()
+          }
+        )
+      if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
+    }else{
+      if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
+      if(substitutionModel==2)subsMat <- substitution_Flu_Human      
+      if(substitutionModel==3)subsMat <- substitution_Flu25_Human      
+       
+    }
+
+    if(substitutionModel==0){
+      subsMat <- matrix(1,4,4)
+      subsMat[,] = 1/3
+      subsMat[1,1] = 0
+      subsMat[2,2] = 0
+      subsMat[3,3] = 0
+      subsMat[4,4] = 0
+    }
+    
+    
+    NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
+    if(substitutionModel==5){
+      subsMat <- FiveS_Substitution
+      return(subsMat)
+    }else{
+      subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
+      return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
+    }
+  }
+
+   
+  # Read in formatted Mutability file
+  initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
+    if(!is.null(mutabilityMatFileName)){
+        tryCatch(
+            mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
+            , error = function(ex){
+              cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
+              q()
+            }
+          )
+    }else{
+      mutabilityMat <- triMutability_Literature_Human
+      if(species==2) mutabilityMat <- triMutability_Literature_Mouse
+    }
+
+  if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
+  
+    if(mutabilityModel==5){
+      mutabilityMat <- FiveS_Mutability
+      return(mutabilityMat)
+    }else{
+      return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
+    }
+  }
+
+  # Read FASTA file formats
+  # Modified from read.fasta from the seqinR package
+  baseline.read.fasta <-
+  function (file = system.file("sequences/sample.fasta", package = "seqinr"), 
+      seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, 
+      set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, 
+      strip.desc = FALSE,  sizeof.longlong = .Machine$sizeof.longlong, 
+      endian = .Platform$endian, apply.mask = TRUE) 
+  {
+      seqtype <- match.arg(seqtype)
+  
+          lines <- readLines(file)
+          
+          if (legacy.mode) {
+              comments <- grep("^;", lines)
+              if (length(comments) > 0) 
+                  lines <- lines[-comments]
+          }
+          
+          
+          ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
+          lines_mod<-lines
+  
+          if(!length(ind_groups)){
+              lines_mod<-c(">>>All sequences combined",lines)            
+          }
+          
+          ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
+  
+          lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
+          id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
+          lines[id] <- "THIS IS A FAKE SEQUENCE"
+          lines[-id] <- lines_mod
+          rm(lines_mod)
+  
+  		ind <- which(substr(lines, 1L, 1L) == ">")
+          nseq <- length(ind)
+          if (nseq == 0) {
+               stop("no line starting with a > character found")
+          }        
+          start <- ind + 1
+          end <- ind - 1
+  
+          while( any(which(ind%in%end)) ){
+            ind=ind[-which(ind%in%end)]
+            nseq <- length(ind)
+            if (nseq == 0) {
+                stop("no line starting with a > character found")
+            }        
+            start <- ind + 1
+            end <- ind - 1        
+          }
+          
+          end <- c(end[-1], length(lines))
+          sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
+          if (seqonly) 
+              return(sequences)
+          nomseq <- lapply(seq_len(nseq), function(i) {
+          
+              #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
+              substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
+          
+          })
+          if (seqtype == "DNA") {
+              if (forceDNAtolower) {
+                  sequences <- as.list(tolower(chartr(".","-",sequences)))
+              }else{
+                  sequences <- as.list(toupper(chartr(".","-",sequences)))
+              }
+          }
+          if (as.string == FALSE) 
+              sequences <- lapply(sequences, s2c)
+          if (set.attributes) {
+              for (i in seq_len(nseq)) {
+                  Annot <- lines[ind[i]]
+                  if (strip.desc) 
+                    Annot <- substr(Annot, 2L, nchar(Annot))
+                  attributes(sequences[[i]]) <- list(name = nomseq[[i]], 
+                    Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", 
+                      DNA = "SeqFastadna"))
+              }
+          }
+          names(sequences) <- nomseq
+          return(sequences)
+  }
+
+  
+  # Replaces non FASTA characters in input files with N  
+  replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
+    gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
+  }    
+  
+  # Find the germlines in the FASTA list
+  germlinesInFile <- function(seqIDs){
+    firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
+    secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
+    return(firstChar==">" & secondChar!=">")
+  }
+  
+  # Find the groups in the FASTA list
+  groupsInFile <- function(seqIDs){
+    sapply(seqIDs,function(x){substr(x,1,2)})==">>"
+  }
+
+  # In the process of finding germlines/groups, expand from the start to end of the group
+  expandTillNext <- function(vecPosToID){    
+    IDs = names(vecPosToID)
+    posOfInterests =  which(vecPosToID)
+  
+    expandedID = rep(NA,length(IDs))
+    expandedIDNames = gsub(">","",IDs[posOfInterests])
+    startIndexes = c(1,posOfInterests[-1])
+    stopIndexes = c(posOfInterests[-1]-1,length(IDs))
+    expandedID  = unlist(sapply(1:length(startIndexes),function(i){
+                                    rep(i,stopIndexes[i]-startIndexes[i]+1)
+                                  }))
+    names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
+                                    rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
+                                  }))  
+    return(expandedID)                                                                                                  
+  }
+    
+  # Process FASTA (list) to return a matrix[input, germline)
+  processInputAdvanced <- function(inputFASTA){
+  
+    seqIDs = names(inputFASTA)
+    numbSeqs = length(seqIDs)
+    posGermlines1 = germlinesInFile(seqIDs)
+    numbGermlines = sum(posGermlines1)
+    posGroups1 = groupsInFile(seqIDs)
+    numbGroups = sum(posGroups1)
+    consDef = NA
+    
+    if(numbGermlines==0){
+      posGermlines = 2
+      numbGermlines = 1  
+    }
+  
+      glPositionsSum = cumsum(posGermlines1)
+      glPositions = table(glPositionsSum)
+      #Find the position of the conservation row
+      consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1  
+    if( length(consDefPos)> 0 ){
+      consDefID =  match(consDefPos, glPositionsSum) 
+      #The coservation rows need to be pulled out and stores seperately 
+      consDef =  inputFASTA[consDefID]
+      inputFASTA =  inputFASTA[-consDefID]
+  
+      seqIDs = names(inputFASTA)
+      numbSeqs = length(seqIDs)
+      posGermlines1 = germlinesInFile(seqIDs)
+      numbGermlines = sum(posGermlines1)
+      posGroups1 = groupsInFile(seqIDs)
+      numbGroups = sum(posGroups1)
+      if(numbGermlines==0){
+        posGermlines = 2
+        numbGermlines = 1  
+      }    
+    }
+    
+    posGroups <- expandTillNext(posGroups1)
+    posGermlines <- expandTillNext(posGermlines1)
+    posGermlines[posGroups1] = 0
+    names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
+    posInput = rep(TRUE,numbSeqs)
+    posInput[posGroups1 | posGermlines1] = FALSE
+    
+    matInput = matrix(NA, nrow=sum(posInput), ncol=2)
+    rownames(matInput) = seqIDs[posInput]
+    colnames(matInput) = c("Input","Germline")
+    
+    vecInputFASTA = unlist(inputFASTA)  
+    matInput[,1] = vecInputFASTA[posInput]
+    matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
+    
+    germlines = posGermlines[posInput]
+    groups = posGroups[posInput]
+    
+    return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))      
+  }
+
+
+  # Replace leading and trailing dashes in the sequence
+  replaceLeadingTrailingDashes <- function(x,readEnd){
+    iiGap = unlist(gregexpr("-",x[1]))
+    ggGap = unlist(gregexpr("-",x[2]))  
+    #posToChange = intersect(iiGap,ggGap)
+    
+    
+    seqIn = replaceLeadingTrailingDashesHelper(x[1])
+    seqGL = replaceLeadingTrailingDashesHelper(x[2])
+    seqTemplate = rep('N',readEnd)
+    seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
+    seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
+#    if(posToChange!=-1){
+#      seqIn[posToChange] = "-"
+#      seqGL[posToChange] = "-"
+#    }
+  
+    seqIn = c2s(seqIn[1:readEnd])
+    seqGL = c2s(seqGL[1:readEnd])
+  
+    lenGL = nchar(seqGL)
+    if(lenGL<readEnd){
+      seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="")
+    }
+  
+    lenInput = nchar(seqIn)
+    if(lenInput<readEnd){
+      seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="")
+    }    
+    return( c(seqIn,seqGL) )
+  }  
+
+  replaceLeadingTrailingDashesHelper <- function(x){
+    grepResults = gregexpr("-*",x)
+    grepResultsPos = unlist(grepResults)
+    grepResultsLen =  attr(grepResults[[1]],"match.length")   
+    #print(paste("x = '", x, "'", sep=""))
+    x = s2c(x)
+    if(x[1]=="-"){
+      x[1:grepResultsLen[1]] = "N"      
+    }
+    if(x[length(x)]=="-"){
+      x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N"      
+    }
+    return(x)
+  }
+
+
+
+  
+  # Check sequences for indels
+  checkForInDels <- function(matInputP){
+    insPos <- checkInsertion(matInputP)
+    delPos <- checkDeletions(matInputP)
+    return(list("Insertions"=insPos, "Deletions"=delPos))
+  }
+
+  # Check sequences for insertions
+  checkInsertion <- function(matInputP){
+    insertionCheck = apply( matInputP,1, function(x){
+                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
+                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )                                          
+                                          return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) )
+                                        })   
+    return(as.vector(insertionCheck))
+  }
+  # Fix inserstions
+  fixInsertions <- function(matInputP){
+    insPos <- checkInsertion(matInputP)
+    sapply((1:nrow(matInputP))[insPos],function(rowIndex){
+                                                x <- matInputP[rowIndex,]
+                                                inputGaps <- gregexpr("-",x[1])[[1]]
+                                                glGaps <- gregexpr("-",x[2])[[1]]
+                                                posInsertions <- glGaps[!(glGaps%in%inputGaps)]
+                                                inputInsertionToN <- s2c(x[2])
+                                                inputInsertionToN[posInsertions]!="-"
+                                                inputInsertionToN[posInsertions] <- "N"
+                                                inputInsertionToN <- c2s(inputInsertionToN)
+                                                matInput[rowIndex,2] <<- inputInsertionToN 
+                                              })                                                               
+    return(insPos)
+  } 
+    
+  # Check sequences for deletions
+  checkDeletions <-function(matInputP){
+    deletionCheck = apply( matInputP,1, function(x){
+                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
+                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )
+                                          return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) )
+                                      })
+    return(as.vector(deletionCheck))                                      
+  }
+  # Fix sequences with deletions
+  fixDeletions <- function(matInputP){
+    delPos <- checkDeletions(matInputP)    
+    sapply((1:nrow(matInputP))[delPos],function(rowIndex){
+                                                x <- matInputP[rowIndex,]
+                                                inputGaps <- gregexpr("-",x[1])[[1]]
+                                                glGaps <- gregexpr("-",x[2])[[1]]
+                                                posDeletions <- inputGaps[!(inputGaps%in%glGaps)]
+                                                inputDeletionToN <- s2c(x[1])
+                                                inputDeletionToN[posDeletions] <- "N"
+                                                inputDeletionToN <- c2s(inputDeletionToN)
+                                                matInput[rowIndex,1] <<- inputDeletionToN 
+                                              })                                                                   
+    return(delPos)
+  }  
+    
+
+  # Trim DNA sequence to the last codon
+  trimToLastCodon <- function(seqToTrim){
+    seqLen = nchar(seqToTrim)  
+    trimmedSeq = s2c(seqToTrim)
+    poi = seqLen
+    tailLen = 0
+    
+    while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){
+      tailLen = tailLen + 1
+      poi = poi - 1   
+    }
+    
+    trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)])
+    seqLen = nchar(trimmedSeq)
+    # Trim sequence to last codon
+  	if( getCodonPos(seqLen)[3] > seqLen )
+  	  trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
+    
+    return(trimmedSeq)
+  }
+  
+  # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
+  # e.g. nuc 86 is part of nucs 85,86,87
+  getCodonPos <- function(nucPos){
+    codonNum =  (ceiling(nucPos/3))*3
+    return( (codonNum-2):codonNum)
+  }
+  
+  # Given a nuclotide position, returns the codon number
+  # e.g. nuc 86  = codon 29
+  getCodonNumb <- function(nucPos){
+    return( ceiling(nucPos/3) )
+  }
+  
+  # Given a codon, returns all the nuc positions that make the codon
+  getCodonNucs <- function(codonNumb){
+    getCodonPos(codonNumb*3)
+  }  
+
+  computeCodonTable <- function(testID=1){
+                  
+    if(testID<=4){    
+      # Pre-compute every codons
+      intCounter = 1
+      for(pOne in NUCLEOTIDES){
+        for(pTwo in NUCLEOTIDES){
+          for(pThree in NUCLEOTIDES){
+            codon = paste(pOne,pTwo,pThree,sep="")
+            colnames(CODON_TABLE)[intCounter] =  codon
+            intCounter = intCounter + 1
+            CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
+          }  
+        }
+      }
+      chars = c("N","A","C","G","T", "-")
+      for(a in chars){
+        for(b in chars){
+          for(c in chars){
+            if(a=="N" | b=="N" | c=="N"){ 
+              #cat(paste(a,b,c),sep="","\n") 
+              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+            }
+          }  
+        }
+      }
+      
+      chars = c("-","A","C","G","T")
+      for(a in chars){
+        for(b in chars){
+          for(c in chars){
+            if(a=="-" | b=="-" | c=="-"){ 
+              #cat(paste(a,b,c),sep="","\n") 
+              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
+            }
+          }  
+        }
+      }
+      CODON_TABLE <<- as.matrix(CODON_TABLE)
+    }
+  }
+  
+  collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
+  #print(length(vecInputSeqs))
+    vecInputSeqs = unique(vecInputSeqs) 
+    if(length(vecInputSeqs)==1){
+      return( list( c(vecInputSeqs,glSeq), F) )
+    }else{
+      charInputSeqs <- sapply(vecInputSeqs, function(x){
+                                              s2c(x)[1:readEnd]
+                                            })
+      charGLSeq <- s2c(glSeq)
+      matClone <- sapply(1:readEnd, function(i){
+                                            posNucs = unique(charInputSeqs[i,])
+                                            posGL = charGLSeq[i]
+                                            error = FALSE                                            
+                                            if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
+                                              return(c("-",error))
+                                            }
+                                            if(length(posNucs)==1)
+                                              return(c(posNucs[1],error))
+                                            else{
+                                              if("N"%in%posNucs){
+                                                error=TRUE
+                                              }
+                                              if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
+                                                return( c(posGL,error) )  
+                                              }else{
+                                                #return( c(sample(posNucs[posNucs!="N"],1),error) )  
+                                                if(nonTerminalOnly==0){
+                                                  return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )  
+                                                }else{
+                                                  posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
+                                                  posNucsTable = table(posNucs)
+                                                  if(sum(posNucsTable>1)==0){
+                                                    return( c(posGL,error) )
+                                                  }else{
+                                                    return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
+                                                  }
+                                                }
+                                                
+                                              }
+                                            } 
+                                          })
+      
+                                          
+      #print(length(vecInputSeqs))                                        
+      return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
+    }
+  }
+
+  # Compute the expected for each sequence-germline pair
+  getExpectedIndividual <- function(matInput){
+  if( any(grep("multicore",search())) ){ 
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
+                                                      computeMutabilities(facLevels[x])
+                                                    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
+                                                      cInput = rep(NA,nchar(matInput[x,1]))
+                                                      cInput[s2c(matInput[x,1])!="N"] = 1
+                                                      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+                                                    })
+                                                    
+    LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
+                                                      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+                                                    })
+                                                    
+    LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
+                                                    #print(x)
+                                                    computeMutationTypes(matInput[x,2])
+                                                })
+    
+    LisGLs_Exp = mclapply(1:dim(matInput)[1],  function(x){
+                                                  computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+                                                })
+    
+    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
+    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+  }else{
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
+      computeMutabilities(facLevels[x])
+    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
+      cInput = rep(NA,nchar(matInput[x,1]))
+      cInput[s2c(matInput[x,1])!="N"] = 1
+      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+    })
+    
+    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
+      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+    })
+    
+    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
+      #print(x)
+      computeMutationTypes(matInput[x,2])
+    })
+    
+    LisGLs_Exp = lapply(1:dim(matInput)[1],  function(x){
+      computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
+    })
+    
+    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
+    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
+    
+  }
+  }
+
+  # Compute mutabilities of sequence based on the tri-nucleotide model
+  computeMutabilities <- function(paramSeq){
+    seqLen = nchar(paramSeq)
+    seqMutabilites = rep(NA,seqLen)
+  
+    gaplessSeq = gsub("-", "", paramSeq)
+    gaplessSeqLen = nchar(gaplessSeq)
+    gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
+    
+    if(mutabilityModel!=5){
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqMutabilites[pos] =      
+        tapply( c(
+                                        getMutability( substr(subSeq,1,3), 3) , 
+                                        getMutability( substr(subSeq,2,4), 2), 
+                                        getMutability( substr(subSeq,3,5), 1) 
+                                        ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
+                                      )
+      #Pos 1
+      subSeq =  substr(gaplessSeq,1,3)
+      gaplessSeqMutabilites[1] =  getMutability(subSeq , 1)
+      #Pos 2
+      subSeq =  substr(gaplessSeq,1,4)
+      gaplessSeqMutabilites[2] =  mean( c(
+                                            getMutability( substr(subSeq,1,3), 2) , 
+                                            getMutability( substr(subSeq,2,4), 1) 
+                                          ),na.rm=T
+                                      ) 
+      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+      return(seqMutabilites)
+    }else{
+      
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
+      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
+      return(seqMutabilites)
+    }
+
+  }
+
+  # Returns the mutability of a triplet at a given position
+  getMutability <- function(codon, pos=1:3){
+    triplets <- rownames(mutability)
+    mutability[  match(codon,triplets) ,pos]
+  }
+
+  getMutability5 <- function(fivemer){
+    return(mutability[fivemer])
+  }
+
+  # Returns the substitution probabilty
+  getTransistionProb <- function(nuc){
+    substitution[nuc,]
+  }
+
+  getTransistionProb5 <- function(fivemer){    
+    if(any(which(fivemer==colnames(substitution)))){
+      return(substitution[,fivemer])
+    }else{
+      return(array(NA,4))
+    }
+  }
+
+  # Given a nuc, returns the other 3 nucs it can mutate to
+  canMutateTo <- function(nuc){
+    NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
+  }
+  
+  # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to 
+  canMutateToProb <- function(nuc){
+    substitution[nuc,canMutateTo(nuc)]
+  }
+
+  # Compute targeting, based on precomputed mutatbility & substitution  
+  computeTargeting <- function(param_strSeq,param_vecMutabilities){
+
+    if(substitutionModel!=5){
+      vecSeq = s2c(param_strSeq)
+      matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )  
+      #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
+      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(length(vecSeq))) 
+      return (matTargeting)
+    }else{
+      
+      seqLen = nchar(param_strSeq)
+      seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
+      paramSeq <- param_strSeq
+      gaplessSeq = gsub("-", "", paramSeq)
+      gaplessSeqLen = nchar(gaplessSeq)
+      gaplessSeqSubstitution  = matrix(NA,ncol=gaplessSeqLen,nrow=4) 
+      
+      pos<- 3:(gaplessSeqLen)
+      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
+      gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
+      seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
+      #matTargeting <- param_vecMutabilities  %*% seqsubstitution
+      matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
+      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(seqLen)) 
+      return (matTargeting)      
+    }
+  }  
+
+  # Compute the mutations types   
+  computeMutationTypes <- function(param_strSeq){
+  #cat(param_strSeq,"\n")
+    #vecSeq = trimToLastCodon(param_strSeq)
+    lenSeq = nchar(param_strSeq)
+    vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
+    matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
+    dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
+    return(matMutationTypes)   
+  }  
+  computeMutationTypesFast <- function(param_strSeq){
+    matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
+    #dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(length(vecSeq)))
+    return(matMutationTypes)   
+  }  
+  mutationTypeOptimized <- function( matOfCodons ){
+   apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) 
+  }  
+
+  # Returns a vector of codons 1 mutation away from the given codon
+  permutateAllCodon <- function(codon){
+    cCodon = s2c(codon)
+    matCodons = t(array(cCodon,dim=c(3,12)))
+    matCodons[1:4,1] = NUCLEOTIDES
+    matCodons[5:8,2] = NUCLEOTIDES
+    matCodons[9:12,3] = NUCLEOTIDES
+    apply(matCodons,1,c2s)
+  }
+
+  # Given two codons, tells you if the mutation is R or S (based on your definition)
+  mutationType <- function(codonFrom,codonTo){
+    if(testID==4){
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        mutationType = "S"
+        if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
+          mutationType = "R"                                                              
+        }
+        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+          mutationType = "Stop"
+        }
+        return(mutationType)
+      }  
+    }else if(testID==5){  
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        if(codonFrom==codonTo){
+          mutationType = "S"
+        }else{
+          codonFrom = s2c(codonFrom)
+          codonTo = s2c(codonTo)  
+          mutationType = "Stop"
+          nucOfI = codonFrom[which(codonTo!=codonFrom)]
+          if(nucOfI=="C"){
+            mutationType = "R"  
+          }else if(nucOfI=="G"){
+            mutationType = "S"
+          }
+        }
+        return(mutationType)
+      }
+    }else{
+      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
+        return(NA)
+      }else{
+        mutationType = "S"
+        if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
+          mutationType = "R"                                                              
+        }
+        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
+          mutationType = "Stop"
+        }
+        return(mutationType)
+      }  
+    }    
+  }
+
+  
+  #given a mat of targeting & it's corresponding mutationtypes returns 
+  #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
+  computeExpected <- function(paramTargeting,paramMutationTypes){
+    # Replacements
+    RPos = which(paramMutationTypes=="R")  
+      #FWR
+      Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+      #CDR
+      Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
+    # Silents
+    SPos = which(paramMutationTypes=="S")  
+      #FWR
+      Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+      #CDR
+      Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
+  
+      return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
+  }
+  
+  # Count the mutations in a sequence
+  # each mutation is treated independently 
+  analyzeMutations2NucUri_website <- function( rev_in_matrix ){
+    paramGL = rev_in_matrix[2,]
+    paramSeq = rev_in_matrix[1,]  
+    
+    #Fill seq with GL seq if gapped
+    #if( any(paramSeq=="-") ){
+    #  gapPos_Seq =  which(paramSeq=="-")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}
+  
+  
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}  
+      
+    analyzeMutations2NucUri(  matrix(c( paramGL, paramSeq  ),2,length(paramGL),byrow=T)  )
+    
+  }
+
+  #1 = GL 
+  #2 = Seq
+  analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
+    paramGL = in_matrix[2,]
+    paramSeq = in_matrix[1,]
+    paramSeqUri = paramGL
+    #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
+    mutations_val = paramGL != paramSeq   
+    if(any(mutations_val)){
+      mutationPos = {1:length(mutations_val)}[mutations_val]  
+      mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+      if(any(mutationPos)){  
+
+        pos<- mutationPos
+        pos_array<-array(sapply(pos,getCodonPos))
+        codonGL =  paramGL[pos_array]
+        
+        codonSeq = sapply(pos,function(x){
+                                  seqP = paramGL[getCodonPos(x)]
+                                  muCodonPos = {x-1}%%3+1 
+                                  seqP[muCodonPos] = paramSeq[x]
+                                  return(seqP)
+                                })      
+        GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+        Seqcodons =   apply(codonSeq,2,c2s)
+        mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+        names(mutationInfo) = mutationPos
+    }
+    if(any(!is.na(mutationInfo))){
+      return(mutationInfo[!is.na(mutationInfo)])    
+    }else{
+      return(NA)
+    }
+    
+    
+    }else{
+      return (NA)
+    }
+  }
+  
+  processNucMutations2 <- function(mu){
+    if(!is.na(mu)){
+      #R
+      if(any(mu=="R")){
+        Rs = mu[mu=="R"]
+        nucNumbs = as.numeric(names(Rs))
+        R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+        R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
+      }else{
+        R_CDR = 0
+        R_FWR = 0
+      }    
+      
+      #S
+      if(any(mu=="S")){
+        Ss = mu[mu=="S"]
+        nucNumbs = as.numeric(names(Ss))
+        S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
+        S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
+      }else{
+        S_CDR = 0
+        S_FWR = 0
+      }    
+      
+      
+      retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
+      retVec[is.na(retVec)]=0
+      return(retVec)
+    }else{
+      return(rep(0,4))
+    }
+  }        
+  
+  
+  ## Z-score Test
+  computeZScore <- function(mat, test="Focused"){
+    matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
+    if(test=="Focused"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }
+  
+    if(test=="Local"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
+      R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }
+    
+    if(test=="Imbalanced"){
+      #Z_Focused_CDR
+      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
+      P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
+      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,1] = (mat[,1]-R_mean)/R_sd
+    
+      #Z_Focused_FWR
+      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
+      P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
+      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
+      R_sd=sqrt(R_mean*(1-P))
+      matRes[,2] = (mat[,3]-R_mean)/R_sd
+    }    
+      
+    matRes[is.nan(matRes)] = NA
+    return(matRes)
+  }
+
+  # Return a p-value for a z-score
+  z2p <- function(z){
+    p=NA
+    if( !is.nan(z) && !is.na(z)){   
+      if(z>0){
+        p = (1 - pnorm(z,0,1))
+      } else if(z<0){
+        p = (-1 * pnorm(z,0,1))
+      } else{
+        p = 0.5
+      }
+    }else{
+      p = NA
+    }
+    return(p)
+  }    
+  
+  
+  ## Bayesian  Test
+
+  # Fitted parameter for the bayesian framework
+BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
+  CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
+  
+  # Given x, M & p, returns a pdf 
+  calculate_bayes <- function ( x=3, N=10, p=0.33,
+                                i=CONST_i,
+                                max_sigma=20,length_sigma=4001
+                              ){
+    if(!0%in%N){
+      G <- max(length(x),length(N),length(p))
+      x=array(x,dim=G)
+      N=array(N,dim=G)
+      p=array(p,dim=G)
+      sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
+      sigma_1<-log({i/{1-i}}/{p/{1-p}})
+      index<-min(N,60)
+      y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
+      if(!sum(is.na(y))){
+        tmp<-approx(sigma_1,y,sigma_s)$y
+        tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
+      }else{
+        return(NA)
+      }
+    }else{
+      return(NA)
+    }
+  }  
+  # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
+  computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
+    flagOneSeq = F
+    if(nrow(mat)==1){
+      mat=rbind(mat,mat)
+      flagOneSeq = T
+    }
+    if(test=="Focused"){
+      #CDR
+      P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,1],0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,3],0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+    
+    if(test=="Local"){
+      #CDR
+      P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
+      X = c(mat[,1],0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
+      N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
+      X = c(mat[,3],0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    } 
+     
+    if(test=="Imbalanced"){
+      #CDR
+      P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
+      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
+      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+
+    if(test=="ImbalancedSilent"){
+      #CDR
+      P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
+      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
+      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesCDR = bayesCDR[-length(bayesCDR)]
+  
+      #FWR
+      P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
+      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
+      X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
+      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
+      bayesFWR = bayesFWR[-length(bayesFWR)]     
+    }
+        
+    if(flagOneSeq==T){
+      bayesCDR = bayesCDR[1]  
+      bayesFWR = bayesFWR[1]
+    }
+    return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
+  }
+  
+  ##Covolution
+  break2chunks<-function(G=1000){
+  base<-2^round(log(sqrt(G),2),0)
+  return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
+  }  
+  
+  PowersOfTwo <- function(G=100){
+    exponents <- array()
+    i = 0
+    while(G > 0){
+      i=i+1
+      exponents[i] <- floor( log2(G) )
+      G <- G-2^exponents[i]
+    }
+    return(exponents)
+  }
+  
+  convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
+    G = ncol(cons)
+    if(G>1){
+      for(gen in log(G,2):1){
+        ll<-seq(from=2,to=2^gen,by=2)
+        sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
+      }
+    }
+    return( cons[,1] )
+  }
+  
+  convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
+    if(length(ncol(cons))) G<-ncol(cons)
+    groups <- PowersOfTwo(G)
+    matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
+    startIndex = 1
+    for( i in 1:length(groups) ){
+      stopIndex <- 2^groups[i] + startIndex - 1
+      if(stopIndex!=startIndex){
+        matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
+        startIndex = stopIndex + 1
+      }
+      else {
+        if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
+        else matG[,i] <- cons
+        #startIndex = stopIndex + 1
+      }
+    }
+    return( list( matG, groups ) )
+  }
+  
+  weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+    lx<-length(x)
+    ly<-length(y)
+    if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
+      if(w<1){
+        y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
+        x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
+        lx<-length(x1)
+        ly<-length(y1)
+      }
+      else {
+        y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
+        x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
+        lx<-length(x1)
+        ly<-length(y1)
+      }
+    }
+    else{
+      x1<-x
+      y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
+      ly<-length(y1)
+    }
+    tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
+    tmp[tmp<=0] = 0
+    return(tmp/sum(tmp))
+  }
+  
+  calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+    matG <- listMatG[[1]]
+    groups <- listMatG[[2]]
+    i = 1
+    resConv <- matG[,i]
+    denom <- 2^groups[i]
+    if(length(groups)>1){
+      while( i<length(groups) ){
+        i = i + 1
+        resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
+        #cat({{2^groups[i]}/denom},"\n")
+        denom <- denom + 2^groups[i]
+      }
+    }
+    return(resConv)
+  }
+  
+  # Given a list of PDFs, returns a convoluted PDF    
+  groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){  
+    listPosteriors = listPosteriors[ !is.na(listPosteriors) ]
+    Length_Postrior<-length(listPosteriors)
+    if(Length_Postrior>1 & Length_Postrior<=Threshold){
+      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }else if(Length_Postrior==1) return(listPosteriors[[1]])
+    else  if(Length_Postrior==0) return(NA)
+    else {
+      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
+      y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }
+  }
+
+  fastConv<-function(cons, max_sigma=20, length_sigma=4001){
+    chunks<-break2chunks(G=ncol(cons))
+    if(ncol(cons)==3) chunks<-2:1
+    index_chunks_end <- cumsum(chunks)
+    index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
+    index_chunks <- cbind(index_chunks_start,index_chunks_end)
+    
+    case <- sum(chunks!=chunks[1])
+    if(case==1) End <- max(1,((length(index_chunks)/2)-1))
+    else End <- max(1,((length(index_chunks)/2)))
+    
+    firsts <- sapply(1:End,function(i){
+          	    indexes<-index_chunks[i,1]:index_chunks[i,2]
+          	    convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
+          	  })
+    if(case==0){
+    	result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
+    }else if(case==1){
+      last<-list(calculate_bayesGHelper(
+      convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
+                                      ),0)
+      result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
+      result<-calculate_bayesGHelper(
+        list(
+          cbind(
+          result_first,last[[1]]),
+          c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
+        )
+      )
+    }
+    return(as.vector(result))
+  }
+    
+  # Computes the 95% CI for a pdf
+  calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+    if(length(Pdf)!=length_sigma) return(NA)
+    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+    cdf = cumsum(Pdf)
+    cdf = cdf/cdf[length(cdf)]  
+    return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) 
+  }
+  
+  # Computes a mean for a pdf
+  calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
+    if(length(Pdf)!=length_sigma) return(NA)
+    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
+    norm = {length_sigma-1}/2/max_sigma
+    return( (Pdf%*%sigma_s/norm)  ) 
+  }
+  
+  # Returns the mean, and the 95% CI for a pdf
+  calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
+    if(is.na(Pdf)) 
+     return(rep(NA,3))  
+    bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
+    bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
+    return(c(bMean, bCI))
+  }   
+
+  # Computes the p-value of a pdf
+  computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
+    if(length(Pdf)>1){
+      norm = {length_sigma-1}/2/max_sigma
+      pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
+      if(pVal>0.5){
+        pVal = pVal-1
+      }
+      return(pVal)
+    }else{
+      return(NA)
+    }
+  }    
+  
+  # Compute p-value of two distributions
+  compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+  #print(c(length(dens1),length(dens2)))
+  if(length(dens1)>1 & length(dens2)>1 ){
+    dens1<-dens1/sum(dens1)
+    dens2<-dens2/sum(dens2)
+    cum2 <- cumsum(dens2)-dens2/2
+    tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+    #print(tmp)
+    if(tmp>0.5)tmp<-tmp-1
+    return( tmp )
+    }
+    else {
+    return(NA)
+    }
+    #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+  }  
+  
+  # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
+  numberOfSeqsWithMutations <- function(matMutations,test=1){
+    if(test==4)test=2
+    cdrSeqs <- 0
+    fwrSeqs <- 0    
+    if(test==1){#focused
+      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
+      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
+      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
+    }
+    if(test==2){#local
+      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
+      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
+      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
+      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
+    }
+  return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
+}  
+
+
+
+shadeColor <- function(sigmaVal=NA,pVal=NA){
+  if(is.na(sigmaVal) & is.na(pVal)) return(NA)
+  if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
+  if(is.na(pVal) || pVal==1 || pVal==0){
+    returnColor = "#FFFFFF";
+  }else{
+    colVal=abs(pVal);
+    
+    if(sigmaVal<0){      
+        if(colVal>0.1)
+          returnColor = "#CCFFCC";
+        if(colVal<=0.1)
+          returnColor = "#99FF99";
+        if(colVal<=0.050)
+          returnColor = "#66FF66";
+        if(colVal<=0.010)
+          returnColor = "#33FF33";
+        if(colVal<=0.005)
+          returnColor = "#00FF00";
+      
+    }else{
+      if(colVal>0.1)
+        returnColor = "#FFCCCC";
+      if(colVal<=0.1)
+        returnColor = "#FF9999";
+      if(colVal<=0.05)
+        returnColor = "#FF6666";
+      if(colVal<=0.01)
+        returnColor = "#FF3333";
+      if(colVal<0.005)
+        returnColor = "#FF0000";
+    }
+  }
+  
+  return(returnColor)
+}
+
+
+
+plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
+  if(!log){
+    x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+    y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+  }else {
+    if(log==2){
+      x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
+      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+    }
+    if(log==1){
+      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+      y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
+    }
+    if(log==3){
+      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
+      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
+    }
+  }
+  return(c("x"=x,"y"=y))
+}
+
+# SHMulation
+
+  # Based on targeting, introduce a single mutation & then update the targeting 
+  oneMutation <- function(){
+    # Pick a postion + mutation
+    posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
+    posNucNumb = ceiling(posMutation/4)                    # Nucleotide number
+    posNucKind = 4 - ( (posNucNumb*4) - posMutation )   # Nuc the position mutates to
+  
+    #mutate the simulation sequence
+    seqSimVec <-  s2c(seqSim)
+    seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
+    seqSim <<-  c2s(seqSimVec)
+    
+    #update Mutability, Targeting & MutationsTypes
+    updateMutabilityNTargeting(posNucNumb)
+  
+    #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) 
+    return(posNucNumb)
+  }  
+  
+  updateMutabilityNTargeting <- function(position){
+    min_i<-max((position-2),1)
+    max_i<-min((position+2),nchar(seqSim))
+    min_ii<-min(min_i,3)
+    
+    #mutability - update locally
+    seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
+    
+    
+    #targeting - compute locally
+    seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])                 
+    seqTargeting[is.na(seqTargeting)] <<- 0
+    #mutCodonPos = getCodonPos(position) 
+    mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
+    #cat(mutCodonPos,"\n")                                                  
+    mutTypeCodon = getCodonPos(position)
+    seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) 
+    # Stop = 0
+    if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
+      seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
+    }
+    
+  
+    #Selection
+    selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))  
+    # CDR
+    selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
+    seqTargeting[selectedCDR] <<-  seqTargeting[selectedCDR] *  exp(selCDR)
+    seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
+        
+    # FWR
+    selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
+    seqTargeting[selectedFWR] <<-  seqTargeting[selectedFWR] *  exp(selFWR)
+    seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K      
+    
+  }  
+  
+
+
+  # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.   
+  validateMutation <- function(){  
+    if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
+      uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
+      mutatedPositions[uniqueMutationsIntroduced] <<-  mutatedPos  
+    }else{
+      if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
+        mutatedPositions <<-  mutatedPositions[-which(mutatedPositions==mutatedPos)]
+        uniqueMutationsIntroduced <<-  uniqueMutationsIntroduced - 1
+      }      
+    }
+  }  
+  
+  
+  
+  # Places text (labels) at normalized coordinates 
+  myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
+    par(xpd=TRUE)
+    if(!log)
+      text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
+    else {
+    if(log==2)
+    text(
+      par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
+      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+      w,cex=cex,adj=adj,col=thecol)
+    if(log==1)
+      text(
+      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+      par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
+      w,cex=cex,adj=adj,col=thecol)
+    if(log==3)
+      text(
+      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
+      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
+      w,cex=cex,adj=adj,col=thecol)
+    }
+    par(xpd=FALSE)
+  }
+  
+  
+  
+  # Count the mutations in a sequence
+  analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
+
+    paramGL = s2c(matInput[inputMatrixIndex,2])
+    paramSeq = s2c(matInput[inputMatrixIndex,1])            
+    
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}        
+    mutations_val = paramGL != paramSeq   
+    
+    if(any(mutations_val)){
+      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+                          
+      pos<- mutationPos
+      pos_array<-array(sapply(pos,getCodonPos))
+      codonGL =  paramGL[pos_array]
+      codonSeqWhole =  paramSeq[pos_array]
+      codonSeq = sapply(pos,function(x){
+                                seqP = paramGL[getCodonPos(x)]
+                                muCodonPos = {x-1}%%3+1 
+                                seqP[muCodonPos] = paramSeq[x]
+                                return(seqP)
+                              })
+      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
+      Seqcodons =   apply(codonSeq,2,c2s)
+      
+      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+      names(mutationInfo) = mutationPos     
+      
+      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
+      names(mutationInfoWhole) = mutationPos
+
+      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+      
+      if(any(!is.na(mutationInfo))){       
+  
+        #Filter based on Stop (at the codon level)
+        if(seqWithStops==1){
+          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+        }else{
+          countStops = sum(mutationInfoWhole=="Stop")
+          if(seqWithStops==2 & countStops==0) mutationInfo = NA
+          if(seqWithStops==3 & countStops>0) mutationInfo = NA
+        }         
+        
+        if(any(!is.na(mutationInfo))){
+          #Filter mutations based on multipleMutation
+          if(multipleMutation==1 & !is.na(mutationInfo)){
+            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+            tableMutationCodons <- table(mutationCodons)
+            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+            if(any(codonsWithMultipleMutations)){
+              #remove the nucleotide mutations in the codons with multiple mutations
+              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+              #replace those codons with Ns in the input sequence
+              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+              matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+            }
+          }
+
+          #Filter mutations based on the model
+          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
+            
+            if(model==1 & !is.na(mutationInfo)){
+              mutationInfo <- mutationInfo[mutationInfo=="S"]
+            }  
+            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
+            else return(NA)
+          }else{
+            return(NA)
+          }
+        }else{
+          return(NA)
+        }
+        
+        
+      }else{
+        return(NA)
+      }
+    
+    
+    }else{
+      return (NA)
+    }    
+  }  
+
+   analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
+
+    paramGL = s2c(inputArray[2])
+    paramSeq = s2c(inputArray[1])            
+    inputSeq <- inputArray[1]
+    #if( any(paramSeq=="N") ){
+    #  gapPos_Seq =  which(paramSeq=="N")
+    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
+    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
+    #}        
+    mutations_val = paramGL != paramSeq   
+    
+    if(any(mutations_val)){
+      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
+      length_mutations =length(mutationPos)
+      mutationInfo = rep(NA,length_mutations)
+                          
+      pos<- mutationPos
+      pos_array<-array(sapply(pos,getCodonPos))
+      codonGL =  paramGL[pos_array]
+      codonSeqWhole =  paramSeq[pos_array]
+      codonSeq = sapply(pos,function(x){
+                                seqP = paramGL[getCodonPos(x)]
+                                muCodonPos = {x-1}%%3+1 
+                                seqP[muCodonPos] = paramSeq[x]
+                                return(seqP)
+                              })
+      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
+      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
+      Seqcodons =   apply(codonSeq,2,c2s)
+      
+      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
+      names(mutationInfo) = mutationPos     
+      
+      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
+      names(mutationInfoWhole) = mutationPos
+
+      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
+      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
+      
+      if(any(!is.na(mutationInfo))){       
+  
+        #Filter based on Stop (at the codon level)
+        if(seqWithStops==1){
+          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
+          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
+          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
+        }else{
+          countStops = sum(mutationInfoWhole=="Stop")
+          if(seqWithStops==2 & countStops==0) mutationInfo = NA
+          if(seqWithStops==3 & countStops>0) mutationInfo = NA
+        }         
+        
+        if(any(!is.na(mutationInfo))){
+          #Filter mutations based on multipleMutation
+          if(multipleMutation==1 & !is.na(mutationInfo)){
+            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
+            tableMutationCodons <- table(mutationCodons)
+            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
+            if(any(codonsWithMultipleMutations)){
+              #remove the nucleotide mutations in the codons with multiple mutations
+              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
+              #replace those codons with Ns in the input sequence
+              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
+              #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
+              inputSeq <- c2s(paramSeq)
+            }
+          }
+          
+          #Filter mutations based on the model
+          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
+            
+            if(model==1 & !is.na(mutationInfo)){
+              mutationInfo <- mutationInfo[mutationInfo=="S"]
+            }  
+            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
+            else return(list(NA,inputSeq))
+          }else{
+            return(list(NA,inputSeq))
+          }
+        }else{
+          return(list(NA,inputSeq))
+        }
+        
+        
+      }else{
+        return(list(NA,inputSeq))
+      }
+    
+    
+    }else{
+      return (list(NA,inputSeq))
+    }    
+  }  
+ 
+  # triMutability Background Count
+  buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+    
+    #rowOrigMatInput = matInput[inputMatrixIndex,]    
+    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
+    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
+    #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
+    tempInput <- cbind(seqInput,seqGL)
+    seqLength = nchar(seqGL)      
+    list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
+    mutationCount <- list_analyzeMutationsFixed[[1]]
+    seqInput <- list_analyzeMutationsFixed[[2]]
+    BackgroundMatrix = mutabilityMatrix
+    MutationMatrix = mutabilityMatrix    
+    MutationCountMatrix = mutabilityMatrix    
+    if(!is.na(mutationCount)){
+      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
+                  
+        fivermerStartPos = 1:(seqLength-4)
+        fivemerLength <- length(fivermerStartPos)
+        fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+        fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
+    
+        #Background
+        for(fivemerIndex in 1:fivemerLength){
+          fivemer = fivemerGL[fivemerIndex]
+          if(!any(grep("N",fivemer))){
+            fivemerCodonPos = fivemerCodon(fivemerIndex)
+            fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
+            fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])          
+            
+            # All mutations model
+            #if(!any(grep("N",fivemerReadingFrameCodon))){
+              if(model==0){
+                if(stopMutations==0){
+                  if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
+                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)              
+                }else{
+                  if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
+                    positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
+                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
+                  }
+                }
+              }else{ # Only silent mutations
+                if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
+                  positionWithinCodon = which(fivemerCodonPos==3)
+                  BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
+                }
+              }
+            #}
+          }
+        }
+        
+        #Mutations
+        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
+        mutationPositions = as.numeric(names(mutationCount))
+        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        countMutations = 0 
+        for(mutationPosition in mutationPositions){
+          fivemerIndex = mutationPosition-2
+          fivemer = fivemerSeq[fivemerIndex]
+          GLfivemer = fivemerGL[fivemerIndex]
+          fivemerCodonPos = fivemerCodon(fivemerIndex)
+          fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
+          fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
+          if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
+            if(model==0){
+                countMutations = countMutations + 1              
+                MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
+                MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)             
+            }else{
+              if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
+                  countMutations = countMutations + 1
+                  positionWithinCodon = which(fivemerCodonPos==3)
+                  glNuc =  substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+                  inputNuc =  substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+                  MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
+                  MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)                                    
+              }                
+            }                  
+          }              
+        }
+        
+        seqMutability = MutationMatrix/BackgroundMatrix
+        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+        #cat(inputMatrixIndex,"\t",countMutations,"\n")
+        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
+        
+      }        
+    }
+  
+  }  
+  
+  #Returns the codon position containing the middle nucleotide
+  fivemerCodon <- function(fivemerIndex){
+    codonPos = list(2:4,1:3,3:5)
+    fivemerType = fivemerIndex%%3
+    return(codonPos[[fivemerType+1]])
+  }
+
+  #returns probability values for one mutation in codons resulting in R, S or Stop
+  probMutations <- function(typeOfMutation){    
+    matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))   
+    for(codon in rownames(matMutationProb)){
+        if( !any(grep("N",codon)) ){
+        for(muPos in 1:3){
+          matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
+          glNuc = matCodon[1,muPos]
+          matCodon[,muPos] = canMutateTo(glNuc) 
+          substitutionRate = substitution[glNuc,matCodon[,muPos]]
+          typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})        
+          matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
+        }
+      }
+    }
+    
+    return(matMutationProb) 
+  }
+  
+  
+  
+  
+#Mapping Trinucleotides to fivemers
+mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
+  rownames(triMutability) <- triMutability_Names
+  Fivemer<-rep(NA,1024)
+  names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
+  Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
+  Fivemer<-Fivemer/sum(Fivemer)
+  return(Fivemer)
+}
+
+collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
+}
+
+
+
+CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
+}
+
+#Uses the real counts of the mutated fivemers
+CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
+  Indices<-substring(names(Fivemer),3,3)==NUC
+  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
+  tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
+}
+
+bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
+N<-sum(x)
+if(N){
+p<-x/N
+k<-length(x)-1
+tmp<-rmultinom(M, size = N, prob=p)
+tmp_p<-apply(tmp,2,function(y)y/N)
+(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
+}
+else return(matrix(0,2,length(x)))
+}
+
+
+
+
+bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
+
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
+(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
+}
+
+
+
+p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
+n=sum(x_obs)
+N<-sum(x)
+k<-length(x)
+y<-rep(1:k,x)
+tmp<-sapply(1:M,function(i)sample(y,n))
+if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
+if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
+tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
+sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
+sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
+}
+
+#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
+# Remove SNPs from IMGT germline segment alleles
+generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
+  repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+  alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
+  SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
+    Indices<-NULL
+    for(i in 1:length(x)){
+      firstSeq = s2c(x[[1]])
+      iSeq = s2c(x[[i]])
+      Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="."  ))
+    }
+    return(sort(unique(Indices)))
+  })
+ repertoireOut <- repertoireIn
+ repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
+                                        alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
+                                        geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
+                                        alleleSeq <- s2c(repertoireOut[[repertoireName]])
+                                        alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
+                                        alleleSeq <- c2s(alleleSeq)
+                                        repertoireOut[[repertoireName]] <- alleleSeq
+                                      })
+  names(repertoireOut) <- names(repertoireIn)
+  write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)                                               
+                                      
+}
+
+
+
+
+
+
+############
+groupBayes2 = function(indexes, param_resultMat){
+  
+  BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
+  BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
+  #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
+  #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
+  #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
+  #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
+  return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
+                "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
+                #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
+                #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
+#                "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
+#                "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
+
+
+}
+
+
+calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
+  G <- max(length(x),length(N),length(p))
+  x=array(x,dim=G)
+  N=array(N,dim=G)
+  p=array(p,dim=G)
+
+  indexOfZero = N>0 & p>0
+  N = N[indexOfZero]
+  x = x[indexOfZero]
+  p = p[indexOfZero]  
+  G <- length(x)
+  
+  if(G){
+    
+    cons<-array( dim=c(length_sigma,G) )
+    if(G==1) {
+    return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
+    }
+    else {
+      for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
+      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
+      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
+      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
+    }
+  }else{
+    return(NA)
+  }
+}
+
+
+calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
+  matG <- listMatG[[1]]  
+  groups <- listMatG[[2]]
+  i = 1  
+  resConv <- matG[,i]
+  denom <- 2^groups[i]
+  if(length(groups)>1){
+    while( i<length(groups) ){
+      i = i + 1
+      resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
+      #cat({{2^groups[i]}/denom},"\n")
+      denom <- denom + 2^groups[i]
+    }
+  }
+  return(resConv)  
+}
+
+weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
+lx<-length(x)
+ly<-length(y)
+if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
+if(w<1){
+y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
+x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
+lx<-length(x1)
+ly<-length(y1)
+}
+else {
+y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
+x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
+lx<-length(x1)
+ly<-length(y1)
+}
+}
+else{
+x1<-x
+y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
+ly<-length(y1)
+}
+tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
+tmp[tmp<=0] = 0 
+return(tmp/sum(tmp))
+}
+
+########################
+
+
+
+
+mutabilityMatrixONE<-rep(0,4)
+names(mutabilityMatrixONE)<-NUCLEOTIDES
+
+  # triMutability Background Count
+  buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
+    
+    #rowOrigMatInput = matInput[inputMatrixIndex,]    
+    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
+    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
+    matInput[inputMatrixIndex,] <<- c(seqInput,seqGL)
+    seqLength = nchar(seqGL)      
+    mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops)
+    BackgroundMatrix = mutabilityMatrixONE
+    MutationMatrix = mutabilityMatrixONE    
+    MutationCountMatrix = mutabilityMatrixONE    
+    if(!is.na(mutationCount)){
+      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
+                  
+#         ONEmerStartPos = 1:(seqLength)
+#         ONEmerLength <- length(ONEmerStartPos)
+        ONEmerGL <- s2c(seqGL)
+        ONEmerSeq <- s2c(seqInput)
+    
+        #Background
+        for(ONEmerIndex in 1:seqLength){
+          ONEmer = ONEmerGL[ONEmerIndex]
+          if(ONEmer!="N"){
+            ONEmerCodonPos = getCodonPos(ONEmerIndex)
+            ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) 
+            ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )         
+            
+            # All mutations model
+            #if(!any(grep("N",ONEmerReadingFrameCodon))){
+              if(model==0){
+                if(stopMutations==0){
+                  if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
+                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)              
+                }else{
+                  if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
+                    positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
+                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+                  }
+                }
+              }else{ # Only silent mutations
+                if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
+                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+                  BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
+                }
+              }
+            }
+          }
+        }
+        
+        #Mutations
+        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
+        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
+        mutationPositions = as.numeric(names(mutationCount))
+        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
+        countMutations = 0 
+        for(mutationPosition in mutationPositions){
+          ONEmerIndex = mutationPosition
+          ONEmer = ONEmerSeq[ONEmerIndex]
+          GLONEmer = ONEmerGL[ONEmerIndex]
+          ONEmerCodonPos = getCodonPos(ONEmerIndex)
+          ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])  
+          ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])  
+          if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
+            if(model==0){
+                countMutations = countMutations + 1              
+                MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
+                MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)             
+            }else{
+              if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
+                  countMutations = countMutations + 1
+                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
+                  glNuc =  substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
+                  inputNuc =  substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
+                  MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
+                  MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)                                    
+              }                
+            }                  
+          }              
+        }
+        
+        seqMutability = MutationMatrix/BackgroundMatrix
+        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
+        #cat(inputMatrixIndex,"\t",countMutations,"\n")
+        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
+#         tmp<-list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
+      }        
+    }
+  
+################
+# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
+
+trim <- function(s, recode.factor=TRUE, ...)
+  UseMethod("trim", s)
+
+trim.default <- function(s, recode.factor=TRUE, ...)
+  s
+
+trim.character <- function(s, recode.factor=TRUE, ...)
+{
+  s <- sub(pattern="^ +", replacement="", x=s)
+  s <- sub(pattern=" +$", replacement="", x=s)
+  s
+}
+
+trim.factor <- function(s, recode.factor=TRUE, ...)
+{
+  levels(s) <- trim(levels(s))
+  if(recode.factor) {
+    dots <- list(x=s, ...)
+    if(is.null(dots$sort)) dots$sort <- sort
+    s <- do.call(what=reorder.factor, args=dots)
+  }
+  s
+}
+
+trim.list <- function(s, recode.factor=TRUE, ...)
+  lapply(s, trim, recode.factor=recode.factor, ...)
+
+trim.data.frame <- function(s, recode.factor=TRUE, ...)
+{
+  s[] <- trim.list(s, recode.factor=recode.factor, ...)
+  s
+}
+#######################################
+# Compute the expected for each sequence-germline pair by codon 
+getExpectedIndividualByCodon <- function(matInput){    
+if( any(grep("multicore",search())) ){  
+  facGL <- factor(matInput[,2])
+  facLevels = levels(facGL)
+  LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
+    computeMutabilities(facLevels[x])
+  })
+  facIndex = match(facGL,facLevels)
+  
+  LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
+    cInput = rep(NA,nchar(matInput[x,1]))
+    cInput[s2c(matInput[x,1])!="N"] = 1
+    LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+  })
+  
+  LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
+    computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+  })
+  
+  LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
+    #print(x)
+    computeMutationTypes(matInput[x,2])
+  })
+  
+  LisGLs_R_Exp = mclapply(1:nrow(matInput),  function(x){
+    Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                        function(codonNucs){                                                      
+                          RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
+                          sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
+                        }
+    )                                                   
+  })
+  
+  LisGLs_S_Exp = mclapply(1:nrow(matInput),  function(x){
+    Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                        function(codonNucs){                                                      
+                          SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
+                          sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+                        }
+    )                                                 
+  })                                                
+  
+  Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+  Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+  return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
+  }else{
+    facGL <- factor(matInput[,2])
+    facLevels = levels(facGL)
+    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
+      computeMutabilities(facLevels[x])
+    })
+    facIndex = match(facGL,facLevels)
+    
+    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
+      cInput = rep(NA,nchar(matInput[x,1]))
+      cInput[s2c(matInput[x,1])!="N"] = 1
+      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
+    })
+    
+    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
+      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
+    })
+    
+    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
+      #print(x)
+      computeMutationTypes(matInput[x,2])
+    })
+    
+    LisGLs_R_Exp = lapply(1:nrow(matInput),  function(x){
+      Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                          function(codonNucs){                                                      
+                            RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
+                            sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
+                          }
+      )                                                   
+    })
+    
+    LisGLs_S_Exp = lapply(1:nrow(matInput),  function(x){
+      Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
+                          function(codonNucs){                                                      
+                            SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
+                            sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
+                          }
+      )                                                 
+    })                                                
+    
+    Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+    Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
+    return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )    
+  }
+}
+
+# getObservedMutationsByCodon <- function(listMutations){
+#   numbSeqs <- length(listMutations) 
+#   obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+#   obsMu_S <- obsMu_R
+#   temp <- mclapply(1:length(listMutations), function(i){
+#     arrMutations = listMutations[[i]]
+#     RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+#     RPos <- sapply(RPos,getCodonNumb)                                                                    
+#     if(any(RPos)){
+#       tabR <- table(RPos)
+#       obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+#     }                                    
+#     
+#     SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+#     SPos <- sapply(SPos,getCodonNumb)
+#     if(any(SPos)){
+#       tabS <- table(SPos)
+#       obsMu_S[i,names(tabS)] <<- tabS
+#     }                                          
+#   }
+#   )
+#   return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
+# }
+
+getObservedMutationsByCodon <- function(listMutations){
+  numbSeqs <- length(listMutations) 
+  obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
+  obsMu_S <- obsMu_R
+  temp <- lapply(1:length(listMutations), function(i){
+    arrMutations = listMutations[[i]]
+    RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
+    RPos <- sapply(RPos,getCodonNumb)                                                                    
+    if(any(RPos)){
+      tabR <- table(RPos)
+      obsMu_R[i,as.numeric(names(tabR))] <<- tabR
+    }                                    
+    
+    SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
+    SPos <- sapply(SPos,getCodonNumb)
+    if(any(SPos)){
+      tabS <- table(SPos)
+      obsMu_S[i,names(tabS)] <<- tabS
+    }                                          
+  }
+  )
+  return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/Baseline_Main.r	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,388 @@
+#########################################################################################
+# License Agreement
+# 
+# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
+# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
+# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
+# OR COPYRIGHT LAW IS PROHIBITED.
+# 
+# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
+# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
+# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
+# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
+#
+# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
+# Coded by: Mohamed Uduman & Gur Yaari
+# Copyright 2012 Kleinstein Lab
+# Version: 1.3 (01/23/2014)
+#########################################################################################
+
+op <- options();
+options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
+library('seqinr')
+if( F & Sys.info()[1]=="Linux"){
+  library("multicore")
+}
+
+# Load functions and initialize global variables
+source("Baseline_Functions.r")
+
+# Initialize parameters with user provided arguments
+  arg <- commandArgs(TRUE)                       
+  #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
+  #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
+  #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
+  testID <- as.numeric(arg[1])                    # 1 = Focused, 2 = Local
+  species <- as.numeric(arg[2])                   # 1 = Human. 2 = Mouse
+  substitutionModel <- as.numeric(arg[3])         # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
+  mutabilityModel <- as.numeric(arg[4])           # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002)  , 5 = FiveS
+  clonal <- as.numeric(arg[5])                    # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
+  fixIndels <- as.numeric(arg[6])                 # 0 = Do nothing, 1 = Try and fix Indels
+  region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
+  inputFilePath <- arg[8]                         # Full path to input file
+  outputPath <- arg[9]                            # Full path to location of output files
+  outputID <- arg[10]                             # ID for session output  
+  
+
+  if(testID==5){
+    traitChangeModel <- 1
+    if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11])    # 1 <- Chothia 1998
+    initializeTraitChange(traitChangeModel)    
+  }
+  
+# Initialize other parameters/variables
+    
+  # Initialzie the codon table ( definitions of R/S )
+  computeCodonTable(testID) 
+
+  # Initialize   
+  # Test Name
+  testName<-"Focused"
+  if(testID==2) testName<-"Local"
+  if(testID==3) testName<-"Imbalanced"    
+  if(testID==4) testName<-"ImbalancedSilent"    
+    
+  # Indel placeholders initialization
+  indelPos <- NULL
+  delPos <- NULL
+  insPos <- NULL
+
+  # Initialize in Tranistion & Mutability matrixes
+  substitution <- initializeSubstitutionMatrix(substitutionModel,species)
+  mutability <- initializeMutabilityMatrix(mutabilityModel,species)
+  
+  # FWR/CDR boundaries
+  flagTrim <- F
+  if( is.na(region[7])){
+    flagTrim <- T
+    region[7]<-region[6]
+  }
+  readStart = min(region,na.rm=T)
+  readEnd = max(region,na.rm=T)
+  if(readStart>1){
+    region = region - (readStart - 1)
+  }
+  region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
+  region_Cod = region
+  
+  readStart = (readStart*3)-2
+  readEnd = (readEnd*3)
+    
+    FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
+                  rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
+                  rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
+                  rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
+                  rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
+                  rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
+                )
+    CDR_Nuc <- (1-FWR_Nuc)
+    CDR_Nuc <- as.logical(CDR_Nuc)
+    FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
+    CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
+    
+    FWR_Codon <- c( rep(TRUE,(region[2])),
+                  rep(FALSE,(region[3]-region[2])),
+                  rep(TRUE,(region[4]-region[3])),
+                  rep(FALSE,(region[5]-region[4])),
+                  rep(TRUE,(region[6]-region[5])),
+                  rep(FALSE,(region[7]-region[6]))
+                )
+    CDR_Codon <- (1-FWR_Codon)
+    CDR_Codon <- as.logical(CDR_Codon)
+
+
+# Read input FASTA file
+  tryCatch(
+    inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
+    , error = function(ex){
+      cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+      q()
+    }
+  )
+  
+  if (length(inputFASTA)==1) {
+    cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
+    q()
+  }
+
+  # Process sequence IDs/names
+  names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
+  
+  # Convert non nucleotide characters to N
+  inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
+  inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
+
+  # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
+  processedInput <- processInputAdvanced(inputFASTA)
+  matInput <- processedInput[[1]]
+  germlines <- processedInput[[2]]
+  lenGermlines = length(unique(germlines))
+  groups <- processedInput[[3]]
+  lenGroups = length(unique(groups))
+  rm(processedInput)
+  rm(inputFASTA)
+
+#   # remove clones with less than 2 seqeunces
+#   tableGL <- table(germlines)
+#   singletons <- which(tableGL<8)
+#   rowsToRemove <- match(singletons,germlines)
+#   if(any(rowsToRemove)){    
+#     matInput <- matInput[-rowsToRemove,]
+#     germlines <- germlines[-rowsToRemove]    
+#     groups <- groups[-rowsToRemove]
+#   }
+# 
+#   # remove unproductive seqs
+#   nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
+#   if(any(nonFuctionalSeqs)){
+#     if(sum(nonFuctionalSeqs)==length(germlines)){
+#       write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#       q()      
+#     }
+#     matInput <- matInput[-which(nonFuctionalSeqs),]
+#     germlines <- germlines[-which(nonFuctionalSeqs)]
+#     germlines[1:length(germlines)] <- 1:length(germlines)
+#     groups <- groups[-which(nonFuctionalSeqs)]
+#   }
+# 
+#   if(class(matInput)=="character"){
+#     write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#     q()    
+#   }
+#   
+#   if(nrow(matInput)<10 | is.null(nrow(matInput))){
+#     write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+#     q()
+#   }
+
+# replace leading & trailing "-" with "N:
+  matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
+    
+  # Trim (nucleotide) input sequences to the last codon
+  #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon) 
+
+#   # Check for Indels
+#   if(fixIndels){
+#     delPos <- fixDeletions(matInput)
+#     insPos <- fixInsertions(matInput)
+#   }else{
+#     # Check for indels
+#     indelPos <- checkForInDels(matInput)
+#     indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
+#   }
+  
+  # If indels are present, remove mutations in the seqeunce & throw warning at end
+  #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
+  
+  colnames(matInput)=c("Input","Germline")
+
+  # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
+  germlinesOriginal = NULL
+  if(clonal){
+    germlinesOriginal <- germlines
+    collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
+                                                                collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
+                                                              })
+    matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
+    names_groups = tapply(groups,germlines,function(x){names(x[1])})  
+    groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})  
+    names(groups) = names_groups
+  
+    names_germlines =  tapply(germlines,germlines,function(x){names(x[1])})  
+    germlines = tapply(   germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))}   )
+    names(germlines) = names_germlines
+    matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})  
+  }
+
+
+# Selection Analysis
+
+  
+#  if (length(germlines)>sequenceLimit) {
+#    # Code to parallelize processing goes here
+#    stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
+#  }
+
+#  if (length(germlines)<sequenceLimit) {}
+  
+    # Compute expected mutation frequencies
+    matExpected <- getExpectedIndividual(matInput)
+    
+    # Count observed number of mutations in the different regions
+    mutations <- lapply( 1:nrow(matInput),  function(i){
+                                              #cat(i,"\n")
+                                              seqI = s2c(matInput[i,1])
+                                              seqG = s2c(matInput[i,2])
+                                              matIGL = matrix(c(seqI,seqG),ncol=length(seqI),nrow=2,byrow=T)    
+                                              retVal <- NA
+                                              tryCatch(
+                                                retVal <- analyzeMutations2NucUri(matIGL)
+                                                , error = function(ex){
+                                                  retVal <- NA
+                                                }
+                                              )                                              
+                                              
+                                              
+                                              return( retVal )
+                                            })
+
+    matObserved <- t(sapply( mutations, processNucMutations2 ))
+    numberOfSeqsWithMutations <- numberOfSeqsWithMutations(matObserved, testID)
+
+    #if(sum(numberOfSeqsWithMutations)==0){
+    #  write.table("No mutated sequences",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
+    #  q()      
+    #}
+    
+    matMutationInfo <- cbind(matObserved,matExpected)
+    rm(matObserved,matExpected)
+    
+     
+    #Bayesian  PDFs
+    bayes_pdf = computeBayesianScore(matMutationInfo, test=testName, max_sigma=20,length_sigma=4001)
+    bayesPDF_cdr = bayes_pdf[[1]]
+    bayesPDF_fwr = bayes_pdf[[2]]    
+    rm(bayes_pdf)
+
+    bayesPDF_germlines_cdr = tapply(bayesPDF_cdr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
+    bayesPDF_germlines_fwr = tapply(bayesPDF_fwr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
+    
+    bayesPDF_groups_cdr = tapply(bayesPDF_cdr,groups,function(x) groupPosteriors(x,length_sigma=4001))
+    bayesPDF_groups_fwr = tapply(bayesPDF_fwr,groups,function(x) groupPosteriors(x,length_sigma=4001))
+    
+    if(lenGroups>1){
+      groups <- c(groups,lenGroups+1)
+      names(groups)[length(groups)] = "All sequences combined"
+      bayesPDF_groups_cdr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
+      bayesPDF_groups_fwr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
+    }
+    
+    #Bayesian  Outputs
+    bayes_cdr =  t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
+    bayes_fwr =  t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
+    bayes_germlines_cdr =  t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
+    bayes_germlines_fwr =  t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
+    bayes_groups_cdr =  t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
+    bayes_groups_fwr =  t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
+    
+    #P-values
+    simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
+    simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
+    
+    simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
+    simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
+    
+    simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
+    simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
+    
+    
+    #Format output
+    
+    # Round expected mutation frequencies to 3 decimal places
+    matMutationInfo[germlinesOriginal[indelPos],] = NA
+    if(nrow(matMutationInfo)==1){
+      matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
+    }else{
+      matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
+    }
+    
+    listPDFs = list()
+    nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
+    
+    matOutput = matrix(NA,ncol=18,nrow=nRows)
+    rowNumb = 1
+    for(G in unique(groups)){
+      #print(G)
+      matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
+      listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
+      names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
+      #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
+      gs = unique(germlines[groups==G])
+      rowNumb = rowNumb+1
+      if( !is.na(gs) ){
+        for( g in gs ){
+          matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
+          listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
+          names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
+          rowNumb = rowNumb+1
+          indexesOfInterest = which(germlines==g)
+          numbSeqsOfInterest =  length(indexesOfInterest)
+          rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
+          matOutput[rowNumb,] = matrix(   c(  rep("Sequence",numbSeqsOfInterest),
+                                              rownames(matInput)[indexesOfInterest],
+                                              c(matMutationInfo[indexesOfInterest,1:4]),
+                                              c(matMutationInfo[indexesOfInterest,5:8]),
+                                              c(bayes_cdr[indexesOfInterest,]),
+                                              c(bayes_fwr[indexesOfInterest,]),
+                                              c(simgaP_cdr[indexesOfInterest]),
+                                              c(simgaP_fwr[indexesOfInterest])                                              
+          ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
+          increment=0
+          for( ioi in indexesOfInterest){
+            listPDFs[[min(rowNumb)+increment]] =  list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
+            names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
+            increment = increment + 1
+          }
+          rowNumb=max(rowNumb)+1
+
+        }
+      }
+    }
+    colsToFormat = 11:18
+    matOutput[,colsToFormat] = formatC(  matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) ,  digits=3)
+    matOutput[matOutput== " NaN"] = NA
+    
+    
+    
+    colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
+                            "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
+                            paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
+                            paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
+    )
+    fileName = paste(outputPath,outputID,".txt",sep="")
+    write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
+    fileName = paste(outputPath,outputID,".RData",sep="")
+    save(listPDFs,file=fileName)
+
+indelWarning = FALSE
+if(sum(indelPos)>0){
+  indelWarning = "<P>Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
+  indelWarning = paste( indelWarning , "<UL>", sep="" )
+  for(indels in names(indelPos)[indelPos]){
+    indelWarning = paste( indelWarning , "<LI>", indels, "</LI>", sep="" )
+  }
+  indelWarning = paste( indelWarning , "</UL></P>", sep="" )
+}
+
+cloneWarning = FALSE
+if(clonal==1){
+  if(sum(matInputErrors)>0){
+    cloneWarning = "<P>Warning: The following clones have sequences of unequal length.";
+    cloneWarning = paste( cloneWarning , "<UL>", sep="" )
+    for(clone in names(matInputErrors)[matInputErrors]){
+      cloneWarning = paste( cloneWarning , "<LI>", names(germlines)[as.numeric(clone)], "</LI>", sep="" )
+    }
+    cloneWarning = paste( cloneWarning , "</UL></P>", sep="" )
+  }
+}
+cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
Binary file baseline/FiveS_Mutability.RData has changed
Binary file baseline/FiveS_Substitution.RData has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,703 @@
+>IGHV1-18*01
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-18*02
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
+>IGHV1-18*03
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1-18*04
+caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
+>IGHV1-2*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*04
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
+>IGHV1-2*05
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
+>IGHV1-24*01
+caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
+>IGHV1-3*01
+caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
+>IGHV1-3*02
+caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
+>IGHV1-38-4*01
+caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
+>IGHV1-45*01
+cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
+>IGHV1-45*02
+cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
+>IGHV1-45*03
+.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
+>IGHV1-46*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-46*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-46*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
+>IGHV1-58*01
+caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
+>IGHV1-58*02
+caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
+>IGHV1-68*01
+caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
+>IGHV1-69*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*02
+caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1-69*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
+>IGHV1-69*04
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*05
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1-69*06
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*07
+.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
+>IGHV1-69*08
+caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*09
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*10
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*11
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*12
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*13
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69*14
+caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-69-2*01
+gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
+>IGHV1-69-2*02
+.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
+>IGHV1-69D*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1-8*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
+>IGHV1-8*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
+>IGHV1-NL1*01
+caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
+>IGHV1/OR15-1*01
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
+>IGHV1/OR15-1*02
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
+>IGHV1/OR15-1*03
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
+>IGHV1/OR15-1*04
+caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
+>IGHV1/OR15-2*01
+caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1/OR15-2*02
+caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1/OR15-2*03
+caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
+>IGHV1/OR15-3*01
+caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1/OR15-3*02
+caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
+>IGHV1/OR15-3*03
+caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1/OR15-4*01
+caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
+>IGHV1/OR15-5*01
+.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
+>IGHV1/OR15-5*02
+caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
+>IGHV1/OR15-9*01
+caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
+>IGHV1/OR21-1*01
+caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
+>IGHV2-10*01
+caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
+>IGHV2-26*01
+caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
+>IGHV2-5*01
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*02
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*03
+................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
+>IGHV2-5*04|
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
+>IGHV2-5*05
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*06
+cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
+>IGHV2-5*08
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-5*09
+caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-70*01
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70*02
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*03
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*04
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
+>IGHV2-70*05
+..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
+>IGHV2-70*06
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*07
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*08
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
+>IGHV2-70*09
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
+>IGHV2-70*10
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70*11
+cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70*12
+cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
+>IGHV2-70*13
+caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
+>IGHV2-70D*04
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2-70D*14
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
+>IGHV2/OR16-5*01
+caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
+>IGHV3-11*01
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-11*03
+caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
+>IGHV3-11*04
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-11*05
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-11*06
+caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-13*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-13*02
+gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-13*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
+>IGHV3-13*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-13*05
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
+>IGHV3-15*01
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*02
+gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*03
+gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*04
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*05
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*06
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*07
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
+>IGHV3-15*08
+gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
+>IGHV3-16*01
+gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
+>IGHV3-16*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
+>IGHV3-19*01
+acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
+>IGHV3-20*01
+gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
+>IGHV3-20*02
+gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
+>IGHV3-21*01
+gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-21*02
+gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-21*03
+gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
+>IGHV3-21*04
+gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-22*01
+gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
+>IGHV3-22*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
+>IGHV3-23*01
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*02
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*03
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23*05
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
+>IGHV3-23D*01
+gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-23D*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
+>IGHV3-25*01
+gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
+>IGHV3-25*02
+gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
+>IGHV3-25*03
+gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
+>IGHV3-25*04
+gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
+>IGHV3-25*05
+gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
+>IGHV3-29*01
+gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
+>IGHV3-30*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*02
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30*03
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*04
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*05
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
+>IGHV3-30*06
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*07
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*08
+caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
+>IGHV3-30*09
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*10
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*11
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*12
+caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*13
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*14
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*15
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*16
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*17
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30*18
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30*19
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30-2*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
+>IGHV3-30-22*01
+gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
+>IGHV3-30-3*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30-3*02
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30-3*03
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-30-33*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
+>IGHV3-30-42*01
+gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
+>IGHV3-30-5*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30-5*02
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-30-52*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
+>IGHV3-32*01
+gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
+>AIGHV3-33*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*02
+caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*03
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-33*04
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*05
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-33*06
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3-33-2*01
+gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
+>IGHV3-35*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
+>IGHV3-38*01|
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
+>IGHV3-38*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
+>IGHV3-38*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
+>IGHV3-38-3*01
+gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
+>IGHV3-43*01
+gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
+>IGHV3-43*02
+gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
+>IGHV3-43D*01
+gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
+>IGHV3-47*01
+gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
+>IGHV3-47*02
+gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
+>IGHV3-48*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-48*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-48*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
+>IGHV3-48*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-49*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*04
+gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-49*05
+gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
+>IGHV3-52*01
+gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
+>IGHV3-52*02
+gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
+>IGHV3-52*03
+gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
+>IGHV3-53*01
+gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-53*02
+gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-53*03
+gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
+>IGHV3-53*04
+gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-54*01
+gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
+>IGHV3-54*02
+gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
+>IGHV3-54*04
+gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
+>IGHV3-62*01
+gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
+>IGHV3-63*01
+gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
+>IGHV3-63*02
+gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
+>IGHV3-64*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
+>IGHV3-64*02
+gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
+>IGHV3-64*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
+>IGHV3-64*04
+caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-64*05
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
+>IGHV3-64D*06
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
+>IGHV3-66*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-66*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
+>IGHV3-66*03
+gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-66*04
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
+>IGHV3-69-1*01
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-69-1*02
+gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
+>IGHV3-7*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-7*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
+>IGHV3-7*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-71*01
+gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
+>IGHV3-71*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
+>IGHV3-71*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
+>IGHV3-72*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
+>IGHV3-72*02
+....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
+>IGHV3-73*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
+>IGHV3-73*02
+gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
+>IGHV3-74*01
+gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
+>IGHV3-74*02
+gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
+>IGHV3-74*03
+gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
+>IGHV3-9*01
+gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
+>IGHV3-9*02
+gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
+>IGHV3-9*03
+gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
+>IGHV3-NL1*01
+caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
+>IGHV3/OR15-7*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
+>IGHV3/OR15-7*02
+gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
+>IGHV3/OR15-7*03
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
+>IGHV3/OR15-7*05
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
+>IGHV3/OR16-10*01
+gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
+>IGHV3/OR16-10*02
+gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
+>IGHV3/OR16-10*03
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
+>IGHV3/OR16-12*01
+gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
+>IGHV3/OR16-13*01
+gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
+>IGHV3/OR16-14*01
+gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
+>IGHV3/OR16-15*01
+gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
+>IGHV3/OR16-15*02
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
+>IGHV3/OR16-16*01
+gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
+>IGHV3/OR16-6*02
+gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
+>IGHV3/OR16-8*01
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
+>IGHV3/OR16-8*02
+gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
+>IGHV3/OR16-9*01
+gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
+>IGHV4-28*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
+>IGHV4-28*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
+>IGHV4-28*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*06
+caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
+>IGHV4-28*07
+caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-30-2*01
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-30-2*02
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
+>IGHV4-30-2*03
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
+>IGHV4-30-2*04
+...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-30-2*05
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-2*06
+cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>XIGHV4-30-4*04
+caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
+>IGHV4-30-4*05
+..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*06
+...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
+>IGHV4-30-4*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-31*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-31*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-31*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-31*04
+caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
+>IGHV4-31*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
+>IGHV4-31*06
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>IGHV4-31*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>IGHV4-31*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
+>IGHV4-31*09
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-31*10
+caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
+>IGHV4-34*01
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*02
+caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*03
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-34*04
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*05
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-34*06
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-34*07
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-34*08
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
+>IGHV4-34*09
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-34*10
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-34*11
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
+>IGHV4-34*12
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
+>IGHV4-34*13
+...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
+>IGHV4-38-2*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
+>IGHV4-38-2*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-39*01
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
+>IGHV4-39*02
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
+>IGHV4-39*03
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
+>IGHV4-39*04
+..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
+>IGHV4-39*05
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
+>IGHV4-39*06
+cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-39*07
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
+>IGHV4-4*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-4*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-4*05
+caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-4*06
+............................................................
+...............tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-4*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-55*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-55*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-55*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-55*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-55*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
+>IGHV4-55*06
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
+>IGHV4-55*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
+>IGHV4-55*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-55*09
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
+>IGHV4-59*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-59*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-59*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
+>IGHV4-59*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
+>IGHV4-59*05
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
+>IGHV4-59*06
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
+>IGHV4-59*07
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
+>IGHV4-59*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
+>IGHV4-59*09
+...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
+>IGHV4-59*10
+caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
+>IGHV4-61*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-61*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
+>IGHV4-61*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4-61*04
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
+>IGHV4-61*05
+cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
+>IGHV4-61*06
+...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
+>IGHV4-61*07
+...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
+>IGHV4-61*08
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
+>IGHV4/OR15-8*01
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4/OR15-8*02
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV4/OR15-8*03
+caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
+>IGHV5-10-1*01
+gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-10-1*02
+gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
+>IGHV5-10-1*03
+gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-10-1*04
+gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-51*01
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
+>IGHV5-51*02
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
+>IGHV5-51*03
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-51*04
+gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
+>IGHV5-51*05
+.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
+>IGHV5-78*01
+gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
+>IGHV6-1*01
+caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
+>IGHV6-1*02
+caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
+>IGHV7-34-1*01
+...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
+>IGHV7-34-1*02
+...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
+>IGHV7-4-1*01
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
+>IGHV7-4-1*02
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
+>IGHV7-4-1*03
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
+>IGHV7-4-1*04
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
+>IGHV7-4-1*05
+caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
+>AIGHV7-40*03|
+ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
+>IGHV7-81*01
+caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/comparePDFs.r	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,225 @@
+options("warn"=-1)
+
+#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
+# Compute p-value of two distributions
+compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
+#print(c(length(dens1),length(dens2)))
+if(length(dens1)>1 & length(dens2)>1 ){
+	dens1<-dens1/sum(dens1)
+	dens2<-dens2/sum(dens2)
+	cum2 <- cumsum(dens2)-dens2/2
+	tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
+	#print(tmp)
+	if(tmp>0.5)tmp<-tmp-1
+	return( tmp )
+	}
+	else {
+	return(NA)
+	}
+	#return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
+}  
+
+
+require("grid")
+arg <- commandArgs(TRUE)
+#arg <- c("300143","4","5")
+arg[!arg=="clonal"]
+input <- arg[1]
+output <- arg[2]
+rowIDs <- as.numeric(  sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } )  )
+
+numbSeqs = length(rowIDs)
+
+if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
+  stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
+}
+
+#load( paste("output/",sessionID,".RData",sep="") )
+load( input )
+#input
+
+xMarks = seq(-20,20,length.out=4001)
+
+plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
+  yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
+
+  if(length(xlim==2)){
+    xMin=xlim[1]
+    xMax=xlim[2]
+  } else {
+    xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+    xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+    xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+    xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+  
+    xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
+    xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
+    xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
+    xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
+  
+    xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
+    xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
+  }
+
+  sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
+  grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
+  x <- sigma
+  pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
+  #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
+  pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
+  grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
+  grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
+  grid.rect()
+  grid.xaxis(gp = gpar(cex=cex/1.1))
+  yticks = pretty(c(-yMax,yMax),8)
+  yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
+  grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
+  if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
+    ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
+  }
+  if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
+    yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
+   }
+
+  if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
+    ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
+  }
+  if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
+    yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
+    grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
+   }
+
+  grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
+  grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
+
+  grid.text("Density", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
+  grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
+  
+  if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
+    pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])       
+    pval = formatC(as.numeric(pCDRFWR),digits=3)
+    grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
+  }
+  grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
+  grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
+  popViewport(2)
+}
+#plot_grid_s(1)
+
+
+p2col<-function(p=0.01){
+  breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
+  i<-findInterval(p,breaks)
+  cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
+            rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
+  return(cols[i])
+}
+
+
+plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
+  if(upper){
+    pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])       
+    pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
+    pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])       
+    pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
+    grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
+    grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
+         
+    grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
+    grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
+
+    grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
+    
+           
+ #   grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
+ #   grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
+  }
+  else{
+  }
+}
+
+
+##################################################################################
+################## The whole OCD's matrix ########################################
+##################################################################################
+
+#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
+pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3) 
+
+pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
+
+for( seqOne in 1:numbSeqs+1){
+  pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
+  if(seqOne>2){ 
+    grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+    grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+    grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
+       
+    grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
+    grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
+  }
+  grid.rect(gp = gpar(col=grey(0.9)))
+  grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
+  popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+  pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
+  if(seqOne<=numbSeqs){   
+    grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
+    grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
+    grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
+    grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
+    grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
+  }
+  grid.rect(gp = gpar(col=grey(0.9)))
+  grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
+  popViewport(1)
+}
+
+for( seqOne in 1:numbSeqs+1){
+  for(seqTwo in 1:numbSeqs+1){
+    pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
+    if(seqTwo>seqOne){
+      plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
+      grid.rect()
+    }    
+    popViewport(1)
+  }
+}
+   
+
+xMin=0
+xMax=0.01
+for(pdf1 in rowIDs){
+  xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
+  xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
+  xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
+  xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
+  xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
+  xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
+}
+
+
+
+for(i in 1:numbSeqs+1){
+  for(j in (i-1):numbSeqs){    
+    pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
+    grid.rect()
+    plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
+    popViewport(1)
+  }
+}
+
+dev.off() 
+
+cat("Success", paste(rowIDs,collapse="_"),sep=":")
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/filter.r	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,35 @@
+arg = commandArgs(TRUE)
+summaryfile = arg[1]
+gappedfile = arg[2]
+selection = arg[3]
+output = arg[4]
+print(paste("selection = ", selection))
+
+
+summarydat = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F)
+gappeddat = read.table(gappedfile, header=T, sep="\t", fill=T, stringsAsFactors=F)
+
+#dat = data.frame(merge(gappeddat, summarydat, by="Sequence.ID", all.x=T))
+
+dat = cbind(gappeddat, summarydat$AA.JUNCTION)
+
+colnames(dat)[length(dat)] = "AA.JUNCTION"
+
+dat$VGene = gsub("^Homsap ", "", dat$V.GENE.and.allele)
+dat$VGene = gsub("[*].*", "", dat$VGene)
+
+dat$DGene = gsub("^Homsap ", "", dat$D.GENE.and.allele)
+dat$DGene = gsub("[*].*", "", dat$DGene)
+
+dat$JGene = gsub("^Homsap ", "", dat$J.GENE.and.allele)
+dat$JGene = gsub("[*].*", "", dat$JGene)
+
+#print(str(dat))
+
+dat$past = do.call(paste, c(dat[unlist(strsplit(selection, ","))], sep = ":"))
+
+dat = dat[!duplicated(dat$past), ]
+
+dat = dat[dat$Functionality != "No results" & dat$Functionality != "unproductive",]
+
+write.table(x=dat, file=output, sep="\t",quote=F,row.names=F,col.names=T)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/script_imgt.py	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,79 @@
+#import xlrd #avoid dep
+import argparse
+import re
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
+
+args = parser.parse_args()
+
+refdic = dict()
+with open(args.ref, 'r') as ref:
+	currentSeq = ""
+	currentId = ""
+	for line in ref:
+		if line[0] is ">":
+			if currentSeq is not "" and currentId is not "":
+				refdic[currentId[1:]] = currentSeq
+			currentId = line.rstrip()
+			currentSeq = ""
+		else:
+			currentSeq += line.rstrip()
+	refdic[currentId[1:]] = currentSeq
+	
+
+vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
+#						r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
+#						r"(IGKV[0-3]D?-[0-9]{1,2})",
+#						r"(IGLV[0-9]-[0-9]{1,2})",
+#						r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
+#						r"(TRGV[234589])",
+#						r"(TRDV[1-3])"]
+
+#vPattern = re.compile(r"|".join(vPattern))
+vPattern = re.compile("|".join(vPattern))
+
+def filterGene(s, pattern):
+    if type(s) is not str:
+        return None
+    res = pattern.search(s)
+    if res:
+        return res.group(0)
+    return None
+
+
+
+currentSeq = ""
+currentId = ""
+first=True
+with open(args.input, 'r') as i:
+	with open(args.output, 'a') as o:
+		o.write(">>>" + args.id + "\n")
+		outputdic = dict()
+		for line in i:
+			if first:
+				first = False
+				continue
+			linesplt = line.split("\t")
+			ref = filterGene(linesplt[1], vPattern)
+			if not ref or not linesplt[2].rstrip():
+				continue
+			if ref in outputdic:
+				outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+			else:
+				outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
+		#print outputdic
+		
+		for k in outputdic.keys():
+			if k in refdic:
+				o.write(">>" + k + "\n")
+				o.write(refdic[k] + "\n")
+				for seq in outputdic[k]:
+					#print seq
+					o.write(">" + seq[0] + "\n")
+					o.write(seq[1] + "\n")
+			else:
+				print k + " not in reference, skipping " + k
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/script_xlsx.py	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,58 @@
+import xlrd
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
+parser.add_argument("--ref", help="Reference file")
+parser.add_argument("--output", help="Output file")
+
+args = parser.parse_args()
+
+gene_column = 6
+id_column = 7
+seq_column = 8
+LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
+
+
+refdic = dict()
+with open(args.ref, 'r') as ref:
+	currentSeq = ""
+	currentId = ""
+	for line in ref.readlines():
+		if line[0] is ">":
+			if currentSeq is not "" and currentId is not "":
+				refdic[currentId[1:]] = currentSeq
+			currentId = line.rstrip()
+			currentSeq = ""
+		else:
+			currentSeq += line.rstrip()
+	refdic[currentId[1:]] = currentSeq
+	
+currentSeq = ""
+currentId = ""
+with xlrd.open_workbook(args.input, 'r') as wb:
+	with open(args.output, 'a') as o:
+		for sheet in wb.sheets():
+			if sheet.cell(1,gene_column).value.find("IGHV") < 0:
+				print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
+				continue
+			o.write(">>>" + sheet.name + "\n")
+			outputdic = dict()
+			for rowindex in range(1, sheet.nrows):
+				ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
+				if ref in outputdic:
+					outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+				else:
+					outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
+			#print outputdic
+			
+			for k in outputdic.keys():
+				if k in refdic:
+					o.write(">>" + k + "\n")
+					o.write(refdic[k] + "\n")
+					for seq in outputdic[k]:
+						#print seq
+						o.write(">" + seq[0] + "\n")
+						o.write(seq[1] + "\n")
+				else:
+					print k + " not in reference, skipping " + k
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/baseline/wrapper.sh	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,104 @@
+#!/bin/bash
+dir="$(cd "$(dirname "$0")" && pwd)"
+
+testID=$1
+species=$2
+substitutionModel=$3
+mutabilityModel=$4
+clonal=$5
+fixIndels=$6
+region=$7
+inputs=$8
+inputs=($inputs)
+IDs=$9
+IDs=($IDs)
+ref=${10}
+output=${11}
+selection=${12}
+output_table=${13}
+outID="result"
+
+echo "$PWD"
+
+echo "testID = $testID"
+echo "species = $species"
+echo "substitutionModel = $substitutionModel"
+echo "mutabilityModel = $mutabilityModel"
+echo "clonal = $clonal"
+echo "fixIndels = $fixIndels"
+echo "region = $region"
+echo "inputs = ${inputs[@]}"
+echo "IDs = ${IDs[@]}"
+echo "ref = $ref"
+echo "output = $output"
+echo "outID = $outID"
+
+fasta="$PWD/baseline.fasta"
+
+
+count=0
+for current in ${inputs[@]}
+do
+	f=$(file $current)
+	zipType="Zip archive"
+	if [[ "$f" == *"$zipType"* ]] || [[ "$f" == *"XZ compressed data"* ]]
+	then
+		id=${IDs[$count]}
+		echo "id=$id"
+		if [[ "$f" == *"Zip archive"* ]] ; then
+			echo "Zip archive"
+			echo "unzip $input -d $PWD/files/"
+			unzip $current -d "$PWD/$id/"
+		elif [[ "$f" == *"XZ compressed data"* ]] ; then
+			echo "ZX archive"
+			echo "tar -xJf $input -C $PWD/files/"
+			mkdir -p "$PWD/$id/files"
+			tar -xJf $current -C "$PWD/$id/files/"
+		fi
+		summaryfile="$PWD/summary_${id}.txt"
+		gappedfile="$PWD/gappednt_${id}.txt"
+		filtered="$PWD/filtered_${id}.txt"
+		filecount=`ls -l $PWD/$id/ | wc -l`
+		if [[ "$filecount" -eq "2" ]]
+		then
+			cat $PWD/$id/*/1_* > $summaryfile
+			cat $PWD/$id/*/2_* > $gappedfile
+		else
+			cat $PWD/$id/1_* > $summaryfile
+			cat $PWD/$id/2_* > $gappedfile
+		fi
+		Rscript $dir/filter.r $summaryfile $gappedfile "$selection" $filtered 2>&1
+		
+		final="$PWD/final_${id}.txt"
+		cat $filtered | cut -f2,4,7 > $final
+		python $dir/script_imgt.py --input $final --ref $ref --output $fasta --id $id
+	else
+		python $dir/script_xlsx.py --input $current --ref $ref --output $fasta
+	fi
+	count=$((count+1))
+done
+
+if [[ $(wc -l < $fasta) -eq "1" ]]; then
+	echo "No sequences in the fasta file, exiting"
+	exit 0
+fi
+
+workdir="$PWD"
+cd $dir
+echo "file: ${inputs[0]}"
+#Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region ${inputs[0]} $workdir/ $outID 2>&1
+Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region $fasta $workdir/ $outID 2>&1
+
+echo "$workdir/${outID}.txt"
+
+rows=`tail -n +2 $workdir/${outID}.txt | grep -v "All sequences combined" | grep -n 'Group' | grep -Eoh '^[0-9]+' | tr '\n' ' '`
+rows=($rows)
+#unset rows[${#rows[@]}-1]
+
+cd $dir
+Rscript --verbose $dir/comparePDFs.r $workdir/${outID}.RData $output ${rows[@]} 2>&1
+cp $workdir/result.txt ${output_table}
+
+
+
+
--- a/datatypes_conf.xml	Thu Aug 04 04:52:51 2016 -0400
+++ b/datatypes_conf.xml	Tue Aug 09 07:20:41 2016 -0400
@@ -1,6 +1,6 @@
 <?xml version="1.0"?>
 <datatypes>
     <registration>
-        <datatype extension="IMGT Archive" type="galaxy.datatypes.binary:CompressedArchive" display_in_upload="True" subclass="True"/>
+        <datatype extension="imgt_archive" type="galaxy.datatypes.binary:CompressedArchive" display_in_upload="True" subclass="True"/>
     </registration>
 </datatypes>
--- a/merge_and_filter.r	Thu Aug 04 04:52:51 2016 -0400
+++ b/merge_and_filter.r	Tue Aug 09 07:20:41 2016 -0400
@@ -12,9 +12,10 @@
 unmatchedfile = args[9]
 method=args[10]
 functionality=args[11]
-unique_type=args[12]
-filter_unique=args[13]
-class_filter=args[14]
+unique.type=args[12]
+filter.unique=args[13]
+class.filter=args[14]
+empty.region.filter=args[15]
 
 summ = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
 sequences = read.table(sequencesfile, header=T, sep="\t", fill=T, stringsAsFactors=F, quote="")
@@ -65,7 +66,7 @@
 
 filtering.steps = rbind(filtering.steps, c("After productive filter", nrow(summ)))
 
-splt = strsplit(class_filter, "_")[[1]]
+splt = strsplit(class.filter, "_")[[1]]
 chunk_hit_threshold = as.numeric(splt[1])
 nt_hit_threshold = as.numeric(splt[2])
 
@@ -101,15 +102,15 @@
 print(paste("Number of sequences after merging with hotspots:", nrow(result)))
 
 #result$past = paste(result$AA.JUNCTION, result$VGene, result$JGene, (result$FR1.IMGT.Nb.of.mutations + result$CDR1.IMGT.Nb.of.mutations + result$FR2.IMGT.Nb.of.mutations + result$CDR2.IMGT.Nb.of.mutations + result$FR3.IMGT.Nb.of.mutations), result$best_match)
-if(unique_type == "AA.JUNCTION_V_subclass"){
+if(unique.type == "AA.JUNCTION_V_subclass"){
 	result$past = paste(result$AA.JUNCTION, result$VGene, result$best_match)
-} else if (unique_type == "AA.JUNCTION_subclass"){
+} else if (unique.type == "AA.JUNCTION_subclass"){
 	result$past = paste(result$AA.JUNCTION, result$best_match)
-} else if (unique_type == "V_subclass"){
+} else if (unique.type == "V_subclass"){
 	result$past = paste(result$VGene, result$best_match)
-} else if (unique_type == "AA.JUNCTION_V"){
+} else if (unique.type == "AA.JUNCTION_V"){
 	result$past = paste(result$AA.JUNCTION, result$VGene)
-} else if (unique_type == "AA.JUNCTION"){
+} else if (unique.type == "AA.JUNCTION"){
 	result$past = paste(result$AA.JUNCTION)
 } else {
 	result$past = 1:nrow(result)
@@ -119,7 +120,7 @@
 
 result = result[,!(names(result) %in% c("past"))]
 
-print(paste("Number of sequences in result after", unique_type, "filtering:", nrow(result)))
+print(paste("Number of sequences in result after", unique.type, "filtering:", nrow(result)))
 
 filtering.steps = rbind(filtering.steps, c("After duplicate filter", nrow(result)))
 
@@ -135,10 +136,19 @@
 print(paste("Number of empty CDR2 sequences:", sum(result$CDR2.IMGT.seq == "")))
 print(paste("Number of empty FR3 sequences:", sum(result$FR3.IMGT.seq == "")))
 
-result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
-
-print(paste("Number of sequences after empty CDR1, FR2, CDR2 and FR3 column filter:", nrow(result)))
-filtering.steps = rbind(filtering.steps, c("After empty CDR1, FR2, CDR2, FR3 filter", nrow(result)))
+if(empty.region.filter == "FR1"){
+	result = result[result$CDR1.IMGT.seq != "" & result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+	print(paste("Number of sequences after empty CDR1, FR2, CDR2 and FR3 column filter:", nrow(result)))
+	filtering.steps = rbind(filtering.steps, c("After empty CDR1, FR2, CDR2, FR3 filter", nrow(result)))
+} else if(empty.region.filter == "CDR1"){
+	result = result[result$FR2.IMGT.seq != "" & result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+	print(paste("Number of sequences after empty FR2, CDR2 and FR3 column filter:", nrow(result)))
+	filtering.steps = rbind(filtering.steps, c("After empty FR2, CDR2, FR3 filter", nrow(result)))
+} else if(empty.region.filter == "FR2"){
+	result = result[result$CDR2.IMGT.seq != "" & result$FR3.IMGT.seq != "", ]
+	print(paste("Number of sequences after empty CDR2 and FR3 column filter:", nrow(result)))
+	filtering.steps = rbind(filtering.steps, c("After empty CDR2, FR3 filter", nrow(result)))
+}
 
 result = result[!(grepl("n|N", result$FR2.IMGT.seq) | grepl("n|N", result$FR3.IMGT.seq) | grepl("n|N", result$CDR1.IMGT.seq) | grepl("n|N", result$CDR2.IMGT.seq) | grepl("n|N", result$CDR3.IMGT.seq)),]
 
@@ -164,10 +174,10 @@
 
 write.table(result, before.unique.file, sep="\t", quote=F,row.names=F,col.names=T)
 
-if(filter_unique != "no"){
+if(filter.unique != "no"){
 	clmns = names(result)
 	
-	if(grepl("_c", filter_unique)){
+	if(grepl("_c", filter.unique)){
 		result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq, result$best_match)
 	} else {
 		result$unique.def = paste(result$CDR1.IMGT.seq, result$FR2.IMGT.seq, result$CDR2.IMGT.seq, result$FR3.IMGT.seq, result$CDR3.IMGT.seq)
@@ -175,7 +185,7 @@
 
 	#fltr = result$unique.def %in% result.filtered$unique.def
 		
-	if(grepl("keep", filter_unique)){
+	if(grepl("keep", filter.unique)){
 		result$unique.def = paste(result$unique.def, result$best_match) #keep the unique sequences that are in multiple classes
 		result = result[!duplicated(result$unique.def),]
 	} else {
--- a/mutation_analysis.r	Thu Aug 04 04:52:51 2016 -0400
+++ b/mutation_analysis.r	Tue Aug 09 07:20:41 2016 -0400
@@ -169,6 +169,8 @@
 
 setwd(outputdir)
 
+base.order = data.frame(base=c("A", "T", "C", "G"), order=1:4)
+
 calculate_result = function(i, gene, dat, matrx, f, fname, name){
 	tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),]
 
@@ -179,67 +181,67 @@
 	 
 	if(nrow(tmp) > 0){
 	  
-	  if(fname == "sum"){
+		if(fname == "sum"){
 		matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
 		matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
 		matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1)
-	  } else {
+		} else {
 		matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
 		matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
 		matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1)
-	  }
-	  
-	  matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
-	  matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
-	  matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
-	  
-	  matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
-	  matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
-	  matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
-	  
-	  matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
-	  matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
-	  matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
-	  
-	  matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
-	  matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
-	  matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
-	  
-	  matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
-	  matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
-	  matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
-	  
-	  matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
-	  matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
-	  matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
-	  
-	  matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
-	  matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
-	  matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
-	  
-	  matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
-	  matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
-	  matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
-	  
-	  if(fname == "sum"){
-		  matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
-		  matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
-		  matrx[10,z] = round(matrx[10,x] / matrx[10,y], digits=1)
-		  
-		  matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
-		  matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
-		  matrx[11,z] = round(matrx[11,x] / matrx[11,y], digits=1)
-	  }
-  }
+		}
+
+		matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
+		matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+		matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
+		matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
+		matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+		matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
+		matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
+		matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+		matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
+		matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+		matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+		matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+
+		matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
+		matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+		matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+		matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+		matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+		matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+		matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
+		matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
+		matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+		matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
+		matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
+		matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+
+		if(fname == "sum"){
+			matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
+			matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+			matrx[10,z] = round(matrx[10,x] / matrx[10,y], digits=1)
+
+			matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1)
+			matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+			matrx[11,z] = round(matrx[11,x] / matrx[11,y], digits=1)
+		}
+	}
   
-  transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
-  row.names(transitionTable) = c("A", "C", "G", "T")
-  transitionTable["A","A"] = NA
-  transitionTable["C","C"] = NA
-  transitionTable["G","G"] = NA
-  transitionTable["T","T"] = NA
+	transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
+	row.names(transitionTable) = c("A", "C", "G", "T")
+	transitionTable["A","A"] = NA
+	transitionTable["C","C"] = NA
+	transitionTable["G","G"] = NA
+	transitionTable["T","T"] = NA
 
-  if(nrow(tmp) > 0){
+	if(nrow(tmp) > 0){
 		for(nt1 in nts){
 			for(nt2 in nts){
 				if(nt1 == nt2){
@@ -259,20 +261,40 @@
 				}
 			}
 		}
-  }
-  
-  
-  print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
-  
-  write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
-  write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
-  
-  cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
-  cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep=""))
-  
-  print(paste(fname, name, nrow(tmp)))
-  
-  matrx
+		transition = transitionTable
+		transition$id = names(transition)
+		
+		transition2 = melt(transition, id.vars="id")
+		
+		transition2 = merge(transition2, base.order, by.x="id", by.y="base")
+		transition2 = merge(transition2, base.order, by.x="variable", by.y="base")
+
+		transition2[is.na(transition2$value),]$value = 0
+		
+		png(filename=paste("transitions_stacked_", name, ".png", sep=""))
+		p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity") #stacked bar
+		p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL))
+		print(p)
+		dev.off()
+		
+		png(filename=paste("transitions_heatmap_", name, ".png", sep=""))
+		p = ggplot(transition2, aes(factor(reorder(id, order.x)), factor(reorder(variable, order.y)))) + geom_tile(aes(fill = value), colour="white") + scale_fill_gradient(low="white", high="steelblue") #heatmap
+		p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base")
+		print(p)
+		dev.off()
+	}
+
+	#print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
+
+	write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+	write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+
+	cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
+	cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep=""))
+
+	#print(paste(fname, name, nrow(tmp)))
+
+	matrx
 }
 
 nts = c("a", "c", "g", "t")
@@ -322,12 +344,6 @@
 
 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F)
 
-
-
-if (!("ggplot2" %in% rownames(installed.packages()))) {
-	install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
-}
-
 dat = dat[!grepl("^unmatched", dat$best_match),]
 
 #blegh
--- a/mutation_analysis.xml	Thu Aug 04 04:52:51 2016 -0400
+++ b/mutation_analysis.xml	Tue Aug 09 07:20:41 2016 -0400
@@ -1,7 +1,7 @@
 <tool id="mutation_analysis_shm" name="Mutation Analysis" version="1.0">
 	<description></description>
 	<command interpreter="bash">
-		wrapper.sh $in_file $method $out_file $out_file.files_path ${in_file.name} ${include_fr1} $functionality $unique $naive_output_ca $naive_output_cg $naive_output_cm $filter_uniques $class_filter
+		wrapper.sh $in_file $method $out_file $out_file.files_path ${in_file.name} ${include_fr1} $functionality $unique $naive_output_ca $naive_output_cg $naive_output_cm $filter_uniques $class_filter $empty_region_filter
 	</command>
 	<inputs>
 		<param name="in_file" type="data" label="IMGT zip file to be analysed" />
@@ -28,19 +28,24 @@
 		</param>
 		<param name="unique" type="select" label="Remove duplicates based on" help="" >
 			<option value="AA.JUNCTION_V_subclass" selected="true">Top.V.Gene, CDR3.Seq, C region</option>
-			<option value="AA.JUNCTION_subclass">CDR3.Seq + C region</option>
-			<option value="AA.JUNCTION_V">CDR3.seq + Top.V.Gene</option>
+			<option value="AA.JUNCTION_subclass">CDR3.Seq, C region</option>
+			<option value="AA.JUNCTION_V">CDR3.seq, Top.V.Gene</option>
 			<option value="AA.JUNCTION">CDR3.seq</option>
 			<option value="none">Don't remove duplicates</option>
 		</param>
 		<param name="class_filter" type="select" label="Class/Subclass filter" help="" >
 			<option value="70_70" selected="true">>70% class and >70% subclass</option>
-			<option value="60_55" selected="true">>60% class and >55% subclass</option>
+			<option value="60_55">>60% class and >55% subclass</option>
 			<option value="70_0">>70% class</option>
 			<option value="60_0">>60% class</option>
 		</param>
+		<param name="empty_region_filter" type="select" label="Sequence starts at" help="" >
+			<option value="FR1" selected="true">FR1 : exclude empty CDR1,FR2,CDR2,FR3</option>
+			<option value="CDR1">CDR1: exclude empty FR2,CDR2,FR3</option>
+			<option value="FR2">FR2: exclude empty,CDR2,FR3</option>
+		</param>
 		<conditional name="naive_output_cond">
-			<param name="naive_output" type="select" label="Output a file for naive analysis?">
+			<param name="naive_output" type="select" label="Output new IMGT archives per class into your history?">
 				<option value="yes">Yes</option>
 				<option value="no" selected="true">No</option>
 			</param>
@@ -48,13 +53,13 @@
 	</inputs>
 	<outputs>
 		<data format="html" name="out_file" label = "Mutation analysis on ${in_file.name}"/>
-		<data format="tabular" name="naive_output_ca" label = "Naive CA input data from ${in_file.name}" >
+		<data format="imgt_archive" name="naive_output_ca" label = "Naive CA input data from ${in_file.name}" >
 		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
 		</data>
-		<data format="tabular" name="naive_output_cg" label = "Naive CG input data from ${in_file.name}" >
+		<data format="imgt_archive" name="naive_output_cg" label = "Naive CG input data from ${in_file.name}" >
 		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
 		</data>
-		<data format="tabular" name="naive_output_cm" label = "Naive CM input data from ${in_file.name}" >
+		<data format="imgt_archive" name="naive_output_cm" label = "Naive CM input data from ${in_file.name}" >
 		    <filter>naive_output_cond['naive_output'] == "yes"</filter>
 		</data>
 	</outputs>
--- a/naive_output.r	Thu Aug 04 04:52:51 2016 -0400
+++ b/naive_output.r	Tue Aug 09 07:20:41 2016 -0400
@@ -43,9 +43,3 @@
 write.table(final.cg, output.file.cg, quote=F, sep="\t", row.names=F, col.names=T)
 write.table(final.cm, output.file.cm, quote=F, sep="\t", row.names=F, col.names=T)
 
-
-
-
-
-
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/new_imgt.r	Tue Aug 09 07:20:41 2016 -0400
@@ -0,0 +1,27 @@
+args <- commandArgs(trailingOnly = TRUE)
+
+imgt.dir = args[1]
+merged.file = args[2]
+gene = args[3]
+
+merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F)
+
+if(gene != "-"){
+	merged = merged[grepl(gene, merged$best_match),]
+}
+
+merged = merged[!grepl("unmatched", merged$best_match),]
+
+for(f in list.files(imgt.dir, pattern="*.txt$")){
+	#print(paste("filtering", f))
+	path = paste(imgt.dir, f, sep="")
+	dat = read.table(path, header=T, sep="\t", fill=T, quote="", stringsAsFactors=F, check.names=FALSE)
+	
+	dat = dat[dat[,"Sequence ID"] %in% merged$Sequence.ID,]
+	
+	if(nrow(dat) > 0 & grepl("^8_", f)){ #change the FR1 columns to 0 in the "8_..." file
+		dat[,grepl("^FR1", names(dat))] = 0
+	}
+	
+	write.table(dat, path, quote=F, sep="\t", row.names=F, col.names=T, na="")
+}
Binary file tmp/IgAT.xlsm has changed
--- a/tmp/baseline/Baseline_Functions.r	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2287 +0,0 @@
-#########################################################################################
-# License Agreement
-# 
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
-# OR COPYRIGHT LAW IS PROHIBITED.
-# 
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-# Global variables  
-  
-  FILTER_BY_MUTATIONS = 1000
-
-  # Nucleotides
-  NUCLEOTIDES = c("A","C","G","T")
-  
-  # Amino Acids
-  AMINO_ACIDS <- c("F", "F", "L", "L", "S", "S", "S", "S", "Y", "Y", "*", "*", "C", "C", "*", "W", "L", "L", "L", "L", "P", "P", "P", "P", "H", "H", "Q", "Q", "R", "R", "R", "R", "I", "I", "I", "M", "T", "T", "T", "T", "N", "N", "K", "K", "S", "S", "R", "R", "V", "V", "V", "V", "A", "A", "A", "A", "D", "D", "E", "E", "G", "G", "G", "G")
-  names(AMINO_ACIDS) <- c("TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC", "TAA", "TAG", "TGT", "TGC", "TGA", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA", "CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT", "ATC", "ATA", "ATG", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG", "AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC", "GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG")
-  names(AMINO_ACIDS) <- names(AMINO_ACIDS)
-
-  #Amino Acid Traits
-  #"*" "A" "C" "D" "E" "F" "G" "H" "I" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V" "W" "Y"
-  #B = "Hydrophobic/Burried"  N = "Intermediate/Neutral"  S="Hydrophilic/Surface") 
-  TRAITS_AMINO_ACIDS_CHOTHIA98 <- c("*","N","B","S","S","B","N","N","B","S","B","B","S","N","S","S","N","N","B","B","N")
-  names(TRAITS_AMINO_ACIDS_CHOTHIA98) <- sort(unique(AMINO_ACIDS))
-  TRAITS_AMINO_ACIDS <- array(NA,21)
-  
-  # Codon Table
-  CODON_TABLE <- as.data.frame(matrix(NA,ncol=64,nrow=12))
-
-  # Substitution Model: Smith DS et al. 1996
-  substitution_Literature_Mouse <- matrix(c(0, 0.156222928, 0.601501588, 0.242275484, 0.172506739, 0, 0.241239892, 0.586253369, 0.54636291, 0.255795364, 0, 0.197841727, 0.290240811, 0.467680608, 0.24207858, 0),nrow=4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  substitution_Flu_Human <- matrix(c(0,0.2795596,0.5026927,0.2177477,0.1693210,0,0.3264723,0.5042067,0.4983549,0.3328321,0,0.1688130,0.2021079,0.4696077,0.3282844,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  substitution_Flu25_Human <- matrix(c(0,0.2580641,0.5163685,0.2255674,0.1541125,0,0.3210224,0.5248651,0.5239281,0.3101292,0,0.1659427,0.1997207,0.4579444,0.3423350,0),4,4,byrow=T,dimnames=list(NUCLEOTIDES,NUCLEOTIDES))
-  load("FiveS_Substitution.RData")
-
-  # Mutability Models: Shapiro GS et al. 2002
-  triMutability_Literature_Human <- matrix(c(0.24, 1.2, 0.96, 0.43, 2.14, 2, 1.11, 1.9, 0.85, 1.83, 2.36, 1.31, 0.82, 0.52, 0.89, 1.33, 1.4, 0.82, 1.83, 0.73, 1.83, 1.62, 1.53, 0.57, 0.92, 0.42, 0.42, 1.47, 3.44, 2.58, 1.18, 0.47, 0.39, 1.12, 1.8, 0.68, 0.47, 2.19, 2.35, 2.19, 1.05, 1.84, 1.26, 0.28, 0.98, 2.37, 0.66, 1.58, 0.67, 0.92, 1.76, 0.83, 0.97, 0.56, 0.75, 0.62, 2.26, 0.62, 0.74, 1.11, 1.16, 0.61, 0.88, 0.67, 0.37, 0.07, 1.08, 0.46, 0.31, 0.94, 0.62, 0.57, 0.29, NA, 1.44, 0.46, 0.69, 0.57, 0.24, 0.37, 1.1, 0.99, 1.39, 0.6, 2.26, 1.24, 1.36, 0.52, 0.33, 0.26, 1.25, 0.37, 0.58, 1.03, 1.2, 0.34, 0.49, 0.33, 2.62, 0.16, 0.4, 0.16, 0.35, 0.75, 1.85, 0.94, 1.61, 0.85, 2.09, 1.39, 0.3, 0.52, 1.33, 0.29, 0.51, 0.26, 0.51, 3.83, 2.01, 0.71, 0.58, 0.62, 1.07, 0.28, 1.2, 0.74, 0.25, 0.59, 1.09, 0.91, 1.36, 0.45, 2.89, 1.27, 3.7, 0.69, 0.28, 0.41, 1.17, 0.56, 0.93, 3.41, 1, 1, NA, 5.9, 0.74, 2.51, 2.24, 2.24, 1.95, 3.32, 2.34, 1.3, 2.3, 1, 0.66, 0.73, 0.93, 0.41, 0.65, 0.89, 0.65, 0.32, NA, 0.43, 0.85, 0.43, 0.31, 0.31, 0.23, 0.29, 0.57, 0.71, 0.48, 0.44, 0.76, 0.51, 1.7, 0.85, 0.74, 2.23, 2.08, 1.16, 0.51, 0.51, 1, 0.5, NA, NA, 0.71, 2.14), nrow=64,byrow=T)
-  triMutability_Literature_Mouse <- matrix(c(1.31, 1.35, 1.42, 1.18, 2.02, 2.02, 1.02, 1.61, 1.99, 1.42, 2.01, 1.03, 2.02, 0.97, 0.53, 0.71, 1.19, 0.83, 0.96, 0.96, 0, 1.7, 2.22, 0.59, 1.24, 1.07, 0.51, 1.68, 3.36, 3.36, 1.14, 0.29, 0.33, 0.9, 1.11, 0.63, 1.08, 2.07, 2.27, 1.74, 0.22, 1.19, 2.37, 1.15, 1.15, 1.56, 0.81, 0.34, 0.87, 0.79, 2.13, 0.49, 0.85, 0.97, 0.36, 0.82, 0.66, 0.63, 1.15, 0.94, 0.85, 0.25, 0.93, 1.19, 0.4, 0.2, 0.44, 0.44, 0.88, 1.06, 0.77, 0.39, 0, 0, 0, 0, 0, 0, 0.43, 0.43, 0.86, 0.59, 0.59, 0, 1.18, 0.86, 2.9, 1.66, 0.4, 0.2, 1.54, 0.43, 0.69, 1.71, 0.68, 0.55, 0.91, 0.7, 1.71, 0.09, 0.27, 0.63, 0.2, 0.45, 1.01, 1.63, 0.96, 1.48, 2.18, 1.2, 1.31, 0.66, 2.13, 0.49, 0, 0, 0, 2.97, 2.8, 0.79, 0.4, 0.5, 0.4, 0.11, 1.68, 0.42, 0.13, 0.44, 0.93, 0.71, 1.11, 1.19, 2.71, 1.08, 3.43, 0.4, 0.67, 0.47, 1.02, 0.14, 1.56, 1.98, 0.53, 0.33, 0.63, 2.06, 1.77, 1.46, 3.74, 2.93, 2.1, 2.18, 0.78, 0.73, 2.93, 0.63, 0.57, 0.17, 0.85, 0.52, 0.31, 0.31, 0, 0, 0.51, 0.29, 0.83, 0.54, 0.28, 0.47, 0.9, 0.99, 1.24, 2.47, 0.73, 0.23, 1.13, 0.24, 2.12, 0.24, 0.33, 0.83, 1.41, 0.62, 0.28, 0.35, 0.77, 0.17, 0.72, 0.58, 0.45, 0.41), nrow=64,byrow=T)
-  triMutability_Names <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAA", "TAC", "TAG", "TAT", "TCA", "TCC", "TCG", "TCT", "TGA", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
-  load("FiveS_Mutability.RData")
-
-# Functions
-  
-  # Translate codon to amino acid
-  translateCodonToAminoAcid<-function(Codon){
-     return(AMINO_ACIDS[Codon])
-  }
-
-  # Translate amino acid to trait change
-  translateAminoAcidToTraitChange<-function(AminoAcid){
-     return(TRAITS_AMINO_ACIDS[AminoAcid])
-  }
-    
-  # Initialize Amino Acid Trait Changes
-  initializeTraitChange <- function(traitChangeModel=1,species=1,traitChangeFileName=NULL){
-    if(!is.null(traitChangeFileName)){
-      tryCatch(
-          traitChange <- read.delim(traitChangeFileName,sep="\t",header=T)
-          , error = function(ex){
-            cat("Error|Error reading trait changes. Please check file name/path and format.\n")
-            q()
-          }
-        )
-    }else{
-      traitChange <- TRAITS_AMINO_ACIDS_CHOTHIA98
-    }
-    TRAITS_AMINO_ACIDS <<- traitChange
- } 
-  
-  # Read in formatted nucleotide substitution matrix
-  initializeSubstitutionMatrix <- function(substitutionModel,species,subsMatFileName=NULL){
-    if(!is.null(subsMatFileName)){
-      tryCatch(
-          subsMat <- read.delim(subsMatFileName,sep="\t",header=T)
-          , error = function(ex){
-            cat("Error|Error reading substitution matrix. Please check file name/path and format.\n")
-            q()
-          }
-        )
-      if(sum(apply(subsMat,1,sum)==1)!=4) subsMat = t(apply(subsMat,1,function(x)x/sum(x)))
-    }else{
-      if(substitutionModel==1)subsMat <- substitution_Literature_Mouse
-      if(substitutionModel==2)subsMat <- substitution_Flu_Human      
-      if(substitutionModel==3)subsMat <- substitution_Flu25_Human      
-       
-    }
-
-    if(substitutionModel==0){
-      subsMat <- matrix(1,4,4)
-      subsMat[,] = 1/3
-      subsMat[1,1] = 0
-      subsMat[2,2] = 0
-      subsMat[3,3] = 0
-      subsMat[4,4] = 0
-    }
-    
-    
-    NUCLEOTIDESN = c(NUCLEOTIDES,"N", "-")
-    if(substitutionModel==5){
-      subsMat <- FiveS_Substitution
-      return(subsMat)
-    }else{
-      subsMat <- rbind(subsMat,rep(NA,4),rep(NA,4))
-      return( matrix(data.matrix(subsMat),6,4,dimnames=list(NUCLEOTIDESN,NUCLEOTIDES) ) )
-    }
-  }
-
-   
-  # Read in formatted Mutability file
-  initializeMutabilityMatrix <- function(mutabilityModel=1, species=1,mutabilityMatFileName=NULL){
-    if(!is.null(mutabilityMatFileName)){
-        tryCatch(
-            mutabilityMat <- read.delim(mutabilityMatFileName,sep="\t",header=T)
-            , error = function(ex){
-              cat("Error|Error reading mutability matrix. Please check file name/path and format.\n")
-              q()
-            }
-          )
-    }else{
-      mutabilityMat <- triMutability_Literature_Human
-      if(species==2) mutabilityMat <- triMutability_Literature_Mouse
-    }
-
-  if(mutabilityModel==0){ mutabilityMat <- matrix(1,64,3)}
-  
-    if(mutabilityModel==5){
-      mutabilityMat <- FiveS_Mutability
-      return(mutabilityMat)
-    }else{
-      return( matrix( data.matrix(mutabilityMat), 64, 3, dimnames=list(triMutability_Names,1:3)) )
-    }
-  }
-
-  # Read FASTA file formats
-  # Modified from read.fasta from the seqinR package
-  baseline.read.fasta <-
-  function (file = system.file("sequences/sample.fasta", package = "seqinr"), 
-      seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE, 
-      set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, 
-      strip.desc = FALSE,  sizeof.longlong = .Machine$sizeof.longlong, 
-      endian = .Platform$endian, apply.mask = TRUE) 
-  {
-      seqtype <- match.arg(seqtype)
-  
-          lines <- readLines(file)
-          
-          if (legacy.mode) {
-              comments <- grep("^;", lines)
-              if (length(comments) > 0) 
-                  lines <- lines[-comments]
-          }
-          
-          
-          ind_groups<-which(substr(lines, 1L, 3L) == ">>>")
-          lines_mod<-lines
-  
-          if(!length(ind_groups)){
-              lines_mod<-c(">>>All sequences combined",lines)            
-          }
-          
-          ind_groups<-which(substr(lines_mod, 1L, 3L) == ">>>")
-  
-          lines <- array("BLA",dim=(length(ind_groups)+length(lines_mod)))
-          id<-sapply(1:length(ind_groups),function(i)ind_groups[i]+i-1)+1
-          lines[id] <- "THIS IS A FAKE SEQUENCE"
-          lines[-id] <- lines_mod
-          rm(lines_mod)
-  
-  		ind <- which(substr(lines, 1L, 1L) == ">")
-          nseq <- length(ind)
-          if (nseq == 0) {
-               stop("no line starting with a > character found")
-          }        
-          start <- ind + 1
-          end <- ind - 1
-  
-          while( any(which(ind%in%end)) ){
-            ind=ind[-which(ind%in%end)]
-            nseq <- length(ind)
-            if (nseq == 0) {
-                stop("no line starting with a > character found")
-            }        
-            start <- ind + 1
-            end <- ind - 1        
-          }
-          
-          end <- c(end[-1], length(lines))
-          sequences <- lapply(seq_len(nseq), function(i) paste(lines[start[i]:end[i]], collapse = ""))
-          if (seqonly) 
-              return(sequences)
-          nomseq <- lapply(seq_len(nseq), function(i) {
-          
-              #firstword <- strsplit(lines[ind[i]], " ")[[1]][1]
-              substr(lines[ind[i]], 2, nchar(lines[ind[i]]))
-          
-          })
-          if (seqtype == "DNA") {
-              if (forceDNAtolower) {
-                  sequences <- as.list(tolower(chartr(".","-",sequences)))
-              }else{
-                  sequences <- as.list(toupper(chartr(".","-",sequences)))
-              }
-          }
-          if (as.string == FALSE) 
-              sequences <- lapply(sequences, s2c)
-          if (set.attributes) {
-              for (i in seq_len(nseq)) {
-                  Annot <- lines[ind[i]]
-                  if (strip.desc) 
-                    Annot <- substr(Annot, 2L, nchar(Annot))
-                  attributes(sequences[[i]]) <- list(name = nomseq[[i]], 
-                    Annot = Annot, class = switch(seqtype, AA = "SeqFastaAA", 
-                      DNA = "SeqFastadna"))
-              }
-          }
-          names(sequences) <- nomseq
-          return(sequences)
-  }
-
-  
-  # Replaces non FASTA characters in input files with N  
-  replaceNonFASTAChars <-function(inSeq="ACGTN-AApA"){
-    gsub('[^ACGTNacgt[:punct:]-[:punct:].]','N',inSeq,perl=TRUE)
-  }    
-  
-  # Find the germlines in the FASTA list
-  germlinesInFile <- function(seqIDs){
-    firstChar = sapply(seqIDs,function(x){substr(x,1,1)})
-    secondChar = sapply(seqIDs,function(x){substr(x,2,2)})
-    return(firstChar==">" & secondChar!=">")
-  }
-  
-  # Find the groups in the FASTA list
-  groupsInFile <- function(seqIDs){
-    sapply(seqIDs,function(x){substr(x,1,2)})==">>"
-  }
-
-  # In the process of finding germlines/groups, expand from the start to end of the group
-  expandTillNext <- function(vecPosToID){    
-    IDs = names(vecPosToID)
-    posOfInterests =  which(vecPosToID)
-  
-    expandedID = rep(NA,length(IDs))
-    expandedIDNames = gsub(">","",IDs[posOfInterests])
-    startIndexes = c(1,posOfInterests[-1])
-    stopIndexes = c(posOfInterests[-1]-1,length(IDs))
-    expandedID  = unlist(sapply(1:length(startIndexes),function(i){
-                                    rep(i,stopIndexes[i]-startIndexes[i]+1)
-                                  }))
-    names(expandedID) = unlist(sapply(1:length(startIndexes),function(i){
-                                    rep(expandedIDNames[i],stopIndexes[i]-startIndexes[i]+1)
-                                  }))  
-    return(expandedID)                                                                                                  
-  }
-    
-  # Process FASTA (list) to return a matrix[input, germline)
-  processInputAdvanced <- function(inputFASTA){
-  
-    seqIDs = names(inputFASTA)
-    numbSeqs = length(seqIDs)
-    posGermlines1 = germlinesInFile(seqIDs)
-    numbGermlines = sum(posGermlines1)
-    posGroups1 = groupsInFile(seqIDs)
-    numbGroups = sum(posGroups1)
-    consDef = NA
-    
-    if(numbGermlines==0){
-      posGermlines = 2
-      numbGermlines = 1  
-    }
-  
-      glPositionsSum = cumsum(posGermlines1)
-      glPositions = table(glPositionsSum)
-      #Find the position of the conservation row
-      consDefPos = as.numeric(names(glPositions[names(glPositions)!=0 & glPositions==1]))+1  
-    if( length(consDefPos)> 0 ){
-      consDefID =  match(consDefPos, glPositionsSum) 
-      #The coservation rows need to be pulled out and stores seperately 
-      consDef =  inputFASTA[consDefID]
-      inputFASTA =  inputFASTA[-consDefID]
-  
-      seqIDs = names(inputFASTA)
-      numbSeqs = length(seqIDs)
-      posGermlines1 = germlinesInFile(seqIDs)
-      numbGermlines = sum(posGermlines1)
-      posGroups1 = groupsInFile(seqIDs)
-      numbGroups = sum(posGroups1)
-      if(numbGermlines==0){
-        posGermlines = 2
-        numbGermlines = 1  
-      }    
-    }
-    
-    posGroups <- expandTillNext(posGroups1)
-    posGermlines <- expandTillNext(posGermlines1)
-    posGermlines[posGroups1] = 0
-    names(posGermlines)[posGroups1] = names(posGroups)[posGroups1]
-    posInput = rep(TRUE,numbSeqs)
-    posInput[posGroups1 | posGermlines1] = FALSE
-    
-    matInput = matrix(NA, nrow=sum(posInput), ncol=2)
-    rownames(matInput) = seqIDs[posInput]
-    colnames(matInput) = c("Input","Germline")
-    
-    vecInputFASTA = unlist(inputFASTA)  
-    matInput[,1] = vecInputFASTA[posInput]
-    matInput[,2] = vecInputFASTA[ which( names(inputFASTA)%in%paste(">",names(posGermlines)[posInput],sep="") )[ posGermlines[posInput]] ]
-    
-    germlines = posGermlines[posInput]
-    groups = posGroups[posInput]
-    
-    return( list("matInput"=matInput, "germlines"=germlines, "groups"=groups, "conservationDefinition"=consDef ))      
-  }
-
-
-  # Replace leading and trailing dashes in the sequence
-  replaceLeadingTrailingDashes <- function(x,readEnd){
-    iiGap = unlist(gregexpr("-",x[1]))
-    ggGap = unlist(gregexpr("-",x[2]))  
-    #posToChange = intersect(iiGap,ggGap)
-    
-    
-    seqIn = replaceLeadingTrailingDashesHelper(x[1])
-    seqGL = replaceLeadingTrailingDashesHelper(x[2])
-    seqTemplate = rep('N',readEnd)
-    seqIn <- c(seqIn,seqTemplate[(length(seqIn)+1):readEnd])
-    seqGL <- c(seqGL,seqTemplate[(length(seqGL)+1):readEnd])
-#    if(posToChange!=-1){
-#      seqIn[posToChange] = "-"
-#      seqGL[posToChange] = "-"
-#    }
-  
-    seqIn = c2s(seqIn[1:readEnd])
-    seqGL = c2s(seqGL[1:readEnd])
-  
-    lenGL = nchar(seqGL)
-    if(lenGL<readEnd){
-      seqGL = paste(seqGL,c2s(rep("N",readEnd-lenGL)),sep="")
-    }
-  
-    lenInput = nchar(seqIn)
-    if(lenInput<readEnd){
-      seqIn = paste(seqIn,c2s(rep("N",readEnd-lenInput)),sep="")
-    }    
-    return( c(seqIn,seqGL) )
-  }  
-
-  replaceLeadingTrailingDashesHelper <- function(x){
-    grepResults = gregexpr("-*",x)
-    grepResultsPos = unlist(grepResults)
-    grepResultsLen =  attr(grepResults[[1]],"match.length")   
-    #print(paste("x = '", x, "'", sep=""))
-    x = s2c(x)
-    if(x[1]=="-"){
-      x[1:grepResultsLen[1]] = "N"      
-    }
-    if(x[length(x)]=="-"){
-      x[(length(x)-grepResultsLen[length(grepResultsLen)]+1):length(x)] = "N"      
-    }
-    return(x)
-  }
-
-
-
-  
-  # Check sequences for indels
-  checkForInDels <- function(matInputP){
-    insPos <- checkInsertion(matInputP)
-    delPos <- checkDeletions(matInputP)
-    return(list("Insertions"=insPos, "Deletions"=delPos))
-  }
-
-  # Check sequences for insertions
-  checkInsertion <- function(matInputP){
-    insertionCheck = apply( matInputP,1, function(x){
-                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
-                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )                                          
-                                          return( is.finite( match(FALSE, glGaps%in%inputGaps ) ) )
-                                        })   
-    return(as.vector(insertionCheck))
-  }
-  # Fix inserstions
-  fixInsertions <- function(matInputP){
-    insPos <- checkInsertion(matInputP)
-    sapply((1:nrow(matInputP))[insPos],function(rowIndex){
-                                                x <- matInputP[rowIndex,]
-                                                inputGaps <- gregexpr("-",x[1])[[1]]
-                                                glGaps <- gregexpr("-",x[2])[[1]]
-                                                posInsertions <- glGaps[!(glGaps%in%inputGaps)]
-                                                inputInsertionToN <- s2c(x[2])
-                                                inputInsertionToN[posInsertions]!="-"
-                                                inputInsertionToN[posInsertions] <- "N"
-                                                inputInsertionToN <- c2s(inputInsertionToN)
-                                                matInput[rowIndex,2] <<- inputInsertionToN 
-                                              })                                                               
-    return(insPos)
-  } 
-    
-  # Check sequences for deletions
-  checkDeletions <-function(matInputP){
-    deletionCheck = apply( matInputP,1, function(x){
-                                          inputGaps <- as.vector( gregexpr("-",x[1])[[1]] )
-                                          glGaps <- as.vector( gregexpr("-",x[2])[[1]] )
-                                          return( is.finite( match(FALSE, inputGaps%in%glGaps ) ) )
-                                      })
-    return(as.vector(deletionCheck))                                      
-  }
-  # Fix sequences with deletions
-  fixDeletions <- function(matInputP){
-    delPos <- checkDeletions(matInputP)    
-    sapply((1:nrow(matInputP))[delPos],function(rowIndex){
-                                                x <- matInputP[rowIndex,]
-                                                inputGaps <- gregexpr("-",x[1])[[1]]
-                                                glGaps <- gregexpr("-",x[2])[[1]]
-                                                posDeletions <- inputGaps[!(inputGaps%in%glGaps)]
-                                                inputDeletionToN <- s2c(x[1])
-                                                inputDeletionToN[posDeletions] <- "N"
-                                                inputDeletionToN <- c2s(inputDeletionToN)
-                                                matInput[rowIndex,1] <<- inputDeletionToN 
-                                              })                                                                   
-    return(delPos)
-  }  
-    
-
-  # Trim DNA sequence to the last codon
-  trimToLastCodon <- function(seqToTrim){
-    seqLen = nchar(seqToTrim)  
-    trimmedSeq = s2c(seqToTrim)
-    poi = seqLen
-    tailLen = 0
-    
-    while(trimmedSeq[poi]=="-" || trimmedSeq[poi]=="."){
-      tailLen = tailLen + 1
-      poi = poi - 1   
-    }
-    
-    trimmedSeq = c2s(trimmedSeq[1:(seqLen-tailLen)])
-    seqLen = nchar(trimmedSeq)
-    # Trim sequence to last codon
-  	if( getCodonPos(seqLen)[3] > seqLen )
-  	  trimmedSeq = substr(seqToTrim,1, ( (getCodonPos(seqLen)[1])-1 ) )
-    
-    return(trimmedSeq)
-  }
-  
-  # Given a nuclotide position, returns the pos of the 3 nucs that made the codon
-  # e.g. nuc 86 is part of nucs 85,86,87
-  getCodonPos <- function(nucPos){
-    codonNum =  (ceiling(nucPos/3))*3
-    return( (codonNum-2):codonNum)
-  }
-  
-  # Given a nuclotide position, returns the codon number
-  # e.g. nuc 86  = codon 29
-  getCodonNumb <- function(nucPos){
-    return( ceiling(nucPos/3) )
-  }
-  
-  # Given a codon, returns all the nuc positions that make the codon
-  getCodonNucs <- function(codonNumb){
-    getCodonPos(codonNumb*3)
-  }  
-
-  computeCodonTable <- function(testID=1){
-                  
-    if(testID<=4){    
-      # Pre-compute every codons
-      intCounter = 1
-      for(pOne in NUCLEOTIDES){
-        for(pTwo in NUCLEOTIDES){
-          for(pThree in NUCLEOTIDES){
-            codon = paste(pOne,pTwo,pThree,sep="")
-            colnames(CODON_TABLE)[intCounter] =  codon
-            intCounter = intCounter + 1
-            CODON_TABLE[,codon] = mutationTypeOptimized(cbind(permutateAllCodon(codon),rep(codon,12)))
-          }  
-        }
-      }
-      chars = c("N","A","C","G","T", "-")
-      for(a in chars){
-        for(b in chars){
-          for(c in chars){
-            if(a=="N" | b=="N" | c=="N"){ 
-              #cat(paste(a,b,c),sep="","\n") 
-              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
-            }
-          }  
-        }
-      }
-      
-      chars = c("-","A","C","G","T")
-      for(a in chars){
-        for(b in chars){
-          for(c in chars){
-            if(a=="-" | b=="-" | c=="-"){ 
-              #cat(paste(a,b,c),sep="","\n") 
-              CODON_TABLE[,paste(a,b,c,sep="")] = rep(NA,12)
-            }
-          }  
-        }
-      }
-      CODON_TABLE <<- as.matrix(CODON_TABLE)
-    }
-  }
-  
-  collapseClone <- function(vecInputSeqs,glSeq,readEnd,nonTerminalOnly=0){
-  #print(length(vecInputSeqs))
-    vecInputSeqs = unique(vecInputSeqs) 
-    if(length(vecInputSeqs)==1){
-      return( list( c(vecInputSeqs,glSeq), F) )
-    }else{
-      charInputSeqs <- sapply(vecInputSeqs, function(x){
-                                              s2c(x)[1:readEnd]
-                                            })
-      charGLSeq <- s2c(glSeq)
-      matClone <- sapply(1:readEnd, function(i){
-                                            posNucs = unique(charInputSeqs[i,])
-                                            posGL = charGLSeq[i]
-                                            error = FALSE                                            
-                                            if(posGL=="-" & sum(!(posNucs%in%c("-","N")))==0 ){
-                                              return(c("-",error))
-                                            }
-                                            if(length(posNucs)==1)
-                                              return(c(posNucs[1],error))
-                                            else{
-                                              if("N"%in%posNucs){
-                                                error=TRUE
-                                              }
-                                              if(sum(!posNucs[posNucs!="N"]%in%posGL)==0){
-                                                return( c(posGL,error) )  
-                                              }else{
-                                                #return( c(sample(posNucs[posNucs!="N"],1),error) )  
-                                                if(nonTerminalOnly==0){
-                                                  return( c(sample(charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL],1),error) )  
-                                                }else{
-                                                  posNucs = charInputSeqs[i,charInputSeqs[i,]!="N" & charInputSeqs[i,]!=posGL]
-                                                  posNucsTable = table(posNucs)
-                                                  if(sum(posNucsTable>1)==0){
-                                                    return( c(posGL,error) )
-                                                  }else{
-                                                    return( c(sample( posNucs[posNucs%in%names(posNucsTable)[posNucsTable>1]],1),error) )
-                                                  }
-                                                }
-                                                
-                                              }
-                                            } 
-                                          })
-      
-                                          
-      #print(length(vecInputSeqs))                                        
-      return(list(c(c2s(matClone[1,]),glSeq),"TRUE"%in%matClone[2,]))
-    }
-  }
-
-  # Compute the expected for each sequence-germline pair
-  getExpectedIndividual <- function(matInput){
-  if( any(grep("multicore",search())) ){ 
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
-                                                      computeMutabilities(facLevels[x])
-                                                    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
-                                                      cInput = rep(NA,nchar(matInput[x,1]))
-                                                      cInput[s2c(matInput[x,1])!="N"] = 1
-                                                      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-                                                    })
-                                                    
-    LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
-                                                      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-                                                    })
-                                                    
-    LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
-                                                    #print(x)
-                                                    computeMutationTypes(matInput[x,2])
-                                                })
-    
-    LisGLs_Exp = mclapply(1:dim(matInput)[1],  function(x){
-                                                  computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
-                                                })
-    
-    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
-    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-  }else{
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
-      computeMutabilities(facLevels[x])
-    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
-      cInput = rep(NA,nchar(matInput[x,1]))
-      cInput[s2c(matInput[x,1])!="N"] = 1
-      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-    })
-    
-    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
-      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-    })
-    
-    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
-      #print(x)
-      computeMutationTypes(matInput[x,2])
-    })
-    
-    LisGLs_Exp = lapply(1:dim(matInput)[1],  function(x){
-      computeExpected(LisGLs_Targeting[[x]],LisGLs_MutationTypes[[x]])
-    })
-    
-    ul_LisGLs_Exp =  unlist(LisGLs_Exp)                                            
-    return(matrix(ul_LisGLs_Exp,ncol=4,nrow=(length(ul_LisGLs_Exp)/4),byrow=T))
-    
-  }
-  }
-
-  # Compute mutabilities of sequence based on the tri-nucleotide model
-  computeMutabilities <- function(paramSeq){
-    seqLen = nchar(paramSeq)
-    seqMutabilites = rep(NA,seqLen)
-  
-    gaplessSeq = gsub("-", "", paramSeq)
-    gaplessSeqLen = nchar(gaplessSeq)
-    gaplessSeqMutabilites = rep(NA,gaplessSeqLen)
-    
-    if(mutabilityModel!=5){
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqMutabilites[pos] =      
-        tapply( c(
-                                        getMutability( substr(subSeq,1,3), 3) , 
-                                        getMutability( substr(subSeq,2,4), 2), 
-                                        getMutability( substr(subSeq,3,5), 1) 
-                                        ),rep(1:(gaplessSeqLen-2),3),mean,na.rm=TRUE
-                                      )
-      #Pos 1
-      subSeq =  substr(gaplessSeq,1,3)
-      gaplessSeqMutabilites[1] =  getMutability(subSeq , 1)
-      #Pos 2
-      subSeq =  substr(gaplessSeq,1,4)
-      gaplessSeqMutabilites[2] =  mean( c(
-                                            getMutability( substr(subSeq,1,3), 2) , 
-                                            getMutability( substr(subSeq,2,4), 1) 
-                                          ),na.rm=T
-                                      ) 
-      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
-      return(seqMutabilites)
-    }else{
-      
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqMutabilites[pos] = sapply(subSeq,function(x){ getMutability5(x) }, simplify=T)
-      seqMutabilites[which(s2c(paramSeq)!="-")]<- gaplessSeqMutabilites
-      return(seqMutabilites)
-    }
-
-  }
-
-  # Returns the mutability of a triplet at a given position
-  getMutability <- function(codon, pos=1:3){
-    triplets <- rownames(mutability)
-    mutability[  match(codon,triplets) ,pos]
-  }
-
-  getMutability5 <- function(fivemer){
-    return(mutability[fivemer])
-  }
-
-  # Returns the substitution probabilty
-  getTransistionProb <- function(nuc){
-    substitution[nuc,]
-  }
-
-  getTransistionProb5 <- function(fivemer){    
-    if(any(which(fivemer==colnames(substitution)))){
-      return(substitution[,fivemer])
-    }else{
-      return(array(NA,4))
-    }
-  }
-
-  # Given a nuc, returns the other 3 nucs it can mutate to
-  canMutateTo <- function(nuc){
-    NUCLEOTIDES[- which(NUCLEOTIDES==nuc)]
-  }
-  
-  # Given a nucleotide, returns the probabilty of other nucleotide it can mutate to 
-  canMutateToProb <- function(nuc){
-    substitution[nuc,canMutateTo(nuc)]
-  }
-
-  # Compute targeting, based on precomputed mutatbility & substitution  
-  computeTargeting <- function(param_strSeq,param_vecMutabilities){
-
-    if(substitutionModel!=5){
-      vecSeq = s2c(param_strSeq)
-      matTargeting = sapply( 1:length(vecSeq), function(x) { param_vecMutabilities[x] * getTransistionProb(vecSeq[x]) } )  
-      #matTargeting = apply( rbind(vecSeq,param_vecMutabilities),2, function(x) { as.vector(as.numeric(x[2]) * getTransistionProb(x[1])) } )
-      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(length(vecSeq))) 
-      return (matTargeting)
-    }else{
-      
-      seqLen = nchar(param_strSeq)
-      seqsubstitution = matrix(NA,ncol=seqLen,nrow=4)
-      paramSeq <- param_strSeq
-      gaplessSeq = gsub("-", "", paramSeq)
-      gaplessSeqLen = nchar(gaplessSeq)
-      gaplessSeqSubstitution  = matrix(NA,ncol=gaplessSeqLen,nrow=4) 
-      
-      pos<- 3:(gaplessSeqLen)
-      subSeq =  substr(rep(gaplessSeq,gaplessSeqLen-2),(pos-2),(pos+2))    
-      gaplessSeqSubstitution[,pos] = sapply(subSeq,function(x){ getTransistionProb5(x) }, simplify=T)
-      seqsubstitution[,which(s2c(paramSeq)!="-")]<- gaplessSeqSubstitution
-      #matTargeting <- param_vecMutabilities  %*% seqsubstitution
-      matTargeting <- sweep(seqsubstitution,2,param_vecMutabilities,`*`)
-      dimnames( matTargeting ) =  list(NUCLEOTIDES,1:(seqLen)) 
-      return (matTargeting)      
-    }
-  }  
-
-  # Compute the mutations types   
-  computeMutationTypes <- function(param_strSeq){
-  #cat(param_strSeq,"\n")
-    #vecSeq = trimToLastCodon(param_strSeq)
-    lenSeq = nchar(param_strSeq)
-    vecCodons = sapply({1:(lenSeq/3)}*3-2,function(x){substr(param_strSeq,x,x+2)})
-    matMutationTypes = matrix( unlist(CODON_TABLE[,vecCodons]) ,ncol=lenSeq,nrow=4, byrow=F)
-    dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(ncol(matMutationTypes)))
-    return(matMutationTypes)   
-  }  
-  computeMutationTypesFast <- function(param_strSeq){
-    matMutationTypes = matrix( CODON_TABLE[,param_strSeq] ,ncol=3,nrow=4, byrow=F)
-    #dimnames( matMutationTypes ) =  list(NUCLEOTIDES,1:(length(vecSeq)))
-    return(matMutationTypes)   
-  }  
-  mutationTypeOptimized <- function( matOfCodons ){
-   apply( matOfCodons,1,function(x){ mutationType(x[2],x[1]) } ) 
-  }  
-
-  # Returns a vector of codons 1 mutation away from the given codon
-  permutateAllCodon <- function(codon){
-    cCodon = s2c(codon)
-    matCodons = t(array(cCodon,dim=c(3,12)))
-    matCodons[1:4,1] = NUCLEOTIDES
-    matCodons[5:8,2] = NUCLEOTIDES
-    matCodons[9:12,3] = NUCLEOTIDES
-    apply(matCodons,1,c2s)
-  }
-
-  # Given two codons, tells you if the mutation is R or S (based on your definition)
-  mutationType <- function(codonFrom,codonTo){
-    if(testID==4){
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        mutationType = "S"
-        if( translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonFrom)) != translateAminoAcidToTraitChange(translateCodonToAminoAcid(codonTo)) ){
-          mutationType = "R"                                                              
-        }
-        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
-          mutationType = "Stop"
-        }
-        return(mutationType)
-      }  
-    }else if(testID==5){  
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        if(codonFrom==codonTo){
-          mutationType = "S"
-        }else{
-          codonFrom = s2c(codonFrom)
-          codonTo = s2c(codonTo)  
-          mutationType = "Stop"
-          nucOfI = codonFrom[which(codonTo!=codonFrom)]
-          if(nucOfI=="C"){
-            mutationType = "R"  
-          }else if(nucOfI=="G"){
-            mutationType = "S"
-          }
-        }
-        return(mutationType)
-      }
-    }else{
-      if( is.na(codonFrom) | is.na(codonTo) | is.na(translateCodonToAminoAcid(codonFrom)) | is.na(translateCodonToAminoAcid(codonTo)) ){
-        return(NA)
-      }else{
-        mutationType = "S"
-        if( translateCodonToAminoAcid(codonFrom) != translateCodonToAminoAcid(codonTo) ){
-          mutationType = "R"                                                              
-        }
-        if(translateCodonToAminoAcid(codonTo)=="*" | translateCodonToAminoAcid(codonFrom)=="*"){
-          mutationType = "Stop"
-        }
-        return(mutationType)
-      }  
-    }    
-  }
-
-  
-  #given a mat of targeting & it's corresponding mutationtypes returns 
-  #a vector of Exp_RCDR,Exp_SCDR,Exp_RFWR,Exp_RFWR
-  computeExpected <- function(paramTargeting,paramMutationTypes){
-    # Replacements
-    RPos = which(paramMutationTypes=="R")  
-      #FWR
-      Exp_R_FWR = sum(paramTargeting[ RPos[which(FWR_Nuc_Mat[RPos]==T)] ],na.rm=T)
-      #CDR
-      Exp_R_CDR = sum(paramTargeting[ RPos[which(CDR_Nuc_Mat[RPos]==T)] ],na.rm=T)
-    # Silents
-    SPos = which(paramMutationTypes=="S")  
-      #FWR
-      Exp_S_FWR = sum(paramTargeting[ SPos[which(FWR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-      #CDR
-      Exp_S_CDR = sum(paramTargeting[ SPos[which(CDR_Nuc_Mat[SPos]==T)] ],na.rm=T)
-  
-      return(c(Exp_R_CDR,Exp_S_CDR,Exp_R_FWR,Exp_S_FWR))
-  }
-  
-  # Count the mutations in a sequence
-  # each mutation is treated independently 
-  analyzeMutations2NucUri_website <- function( rev_in_matrix ){
-    paramGL = rev_in_matrix[2,]
-    paramSeq = rev_in_matrix[1,]  
-    
-    #Fill seq with GL seq if gapped
-    #if( any(paramSeq=="-") ){
-    #  gapPos_Seq =  which(paramSeq=="-")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "-"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}
-  
-  
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}  
-      
-    analyzeMutations2NucUri(  matrix(c( paramGL, paramSeq  ),2,length(paramGL),byrow=T)  )
-    
-  }
-
-  #1 = GL 
-  #2 = Seq
-  analyzeMutations2NucUri <- function( in_matrix=matrix(c(c("A","A","A","C","C","C"),c("A","G","G","C","C","A")),2,6,byrow=T) ){
-    paramGL = in_matrix[2,]
-    paramSeq = in_matrix[1,]
-    paramSeqUri = paramGL
-    #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]})
-    mutations_val = paramGL != paramSeq   
-    if(any(mutations_val)){
-      mutationPos = {1:length(mutations_val)}[mutations_val]  
-      mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})]
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-      if(any(mutationPos)){  
-
-        pos<- mutationPos
-        pos_array<-array(sapply(pos,getCodonPos))
-        codonGL =  paramGL[pos_array]
-        
-        codonSeq = sapply(pos,function(x){
-                                  seqP = paramGL[getCodonPos(x)]
-                                  muCodonPos = {x-1}%%3+1 
-                                  seqP[muCodonPos] = paramSeq[x]
-                                  return(seqP)
-                                })      
-        GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-        Seqcodons =   apply(codonSeq,2,c2s)
-        mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-        names(mutationInfo) = mutationPos
-    }
-    if(any(!is.na(mutationInfo))){
-      return(mutationInfo[!is.na(mutationInfo)])    
-    }else{
-      return(NA)
-    }
-    
-    
-    }else{
-      return (NA)
-    }
-  }
-  
-  processNucMutations2 <- function(mu){
-    if(!is.na(mu)){
-      #R
-      if(any(mu=="R")){
-        Rs = mu[mu=="R"]
-        nucNumbs = as.numeric(names(Rs))
-        R_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
-        R_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
-      }else{
-        R_CDR = 0
-        R_FWR = 0
-      }    
-      
-      #S
-      if(any(mu=="S")){
-        Ss = mu[mu=="S"]
-        nucNumbs = as.numeric(names(Ss))
-        S_CDR = sum(as.integer(CDR_Nuc[nucNumbs]),na.rm=T)
-        S_FWR = sum(as.integer(FWR_Nuc[nucNumbs]),na.rm=T)      
-      }else{
-        S_CDR = 0
-        S_FWR = 0
-      }    
-      
-      
-      retVec = c(R_CDR,S_CDR,R_FWR,S_FWR)
-      retVec[is.na(retVec)]=0
-      return(retVec)
-    }else{
-      return(rep(0,4))
-    }
-  }        
-  
-  
-  ## Z-score Test
-  computeZScore <- function(mat, test="Focused"){
-    matRes <- matrix(NA,ncol=2,nrow=(nrow(mat)))
-    if(test=="Focused"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(1,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(3,2,4)],P),1,function(x){x[4]*(sum(x[1:3]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }
-  
-    if(test=="Local"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(1,2)],P),1,function(x){x[3]*(sum(x[1:2]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))})
-      R_mean = apply(cbind(mat[,c(3,4)],P),1,function(x){x[3]*(sum(x[1:2]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }
-    
-    if(test=="Imbalanced"){
-      #Z_Focused_CDR
-      #P_Denom = sum( mat[1,c(5,6,8)], na.rm=T )
-      P = apply(mat[,5:8],1,function(x){((x[1]+x[2])/sum(x))})
-      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,1] = (mat[,1]-R_mean)/R_sd
-    
-      #Z_Focused_FWR
-      #P_Denom = sum( mat[1,c(7,6,8)], na.rm=T )
-      P = apply(mat[,5:8],1,function(x){((x[3]+x[4])/sum(x))})
-      R_mean = apply(cbind(mat[,1:4],P),1,function(x){x[5]*(sum(x[1:4]))})
-      R_sd=sqrt(R_mean*(1-P))
-      matRes[,2] = (mat[,3]-R_mean)/R_sd
-    }    
-      
-    matRes[is.nan(matRes)] = NA
-    return(matRes)
-  }
-
-  # Return a p-value for a z-score
-  z2p <- function(z){
-    p=NA
-    if( !is.nan(z) && !is.na(z)){   
-      if(z>0){
-        p = (1 - pnorm(z,0,1))
-      } else if(z<0){
-        p = (-1 * pnorm(z,0,1))
-      } else{
-        p = 0.5
-      }
-    }else{
-      p = NA
-    }
-    return(p)
-  }    
-  
-  
-  ## Bayesian  Test
-
-  # Fitted parameter for the bayesian framework
-BAYESIAN_FITTED<-c(0.407277142798302, 0.554007336744485, 0.63777155771234, 0.693989162719009, 0.735450014674917, 0.767972534429806, 0.794557287143399, 0.816906816601605, 0.83606796225341, 0.852729446430296, 0.867370424541641, 0.880339760590323, 0.891900995024999, 0.902259181289864, 0.911577919359,0.919990301665853, 0.927606458124537, 0.934518806350661, 0.940805863754375, 0.946534836475715, 0.951763691199255, 0.95654428191308, 0.960920179487397, 0.964930893680829, 0.968611312149038, 0.971992459313836, 0.975102110004818, 0.977964943023096, 0.980603428208439, 0.983037660179428, 0.985285800977406, 0.987364285326685, 0.989288037855441, 0.991070478823525, 0.992723699729969, 0.994259575477392, 0.995687688867975, 0.997017365051493, 0.998257085153047, 0.999414558305388, 1.00049681357804, 1.00151036237481, 1.00246080204981, 1.00335370751909, 1.0041939329768, 1.0049859393417, 1.00573382091263, 1.00644127217376, 1.00711179729107, 1.00774845526417, 1.00835412715854, 1.00893143010366, 1.00948275846309, 1.01001030293661, 1.01051606798079, 1.01100188771288, 1.01146944044216, 1.01192026195449, 1.01235575766094, 1.01277721370986)
-  CONST_i <- sort(c(((2^(seq(-39,0,length.out=201)))/2)[1:200],(c(0:11,13:99)+0.5)/100,1-(2^(seq(-39,0,length.out=201)))/2))
-  
-  # Given x, M & p, returns a pdf 
-  calculate_bayes <- function ( x=3, N=10, p=0.33,
-                                i=CONST_i,
-                                max_sigma=20,length_sigma=4001
-                              ){
-    if(!0%in%N){
-      G <- max(length(x),length(N),length(p))
-      x=array(x,dim=G)
-      N=array(N,dim=G)
-      p=array(p,dim=G)
-      sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma)
-      sigma_1<-log({i/{1-i}}/{p/{1-p}})
-      index<-min(N,60)
-      y<-dbeta(i,x+BAYESIAN_FITTED[index],N+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1))
-      if(!sum(is.na(y))){
-        tmp<-approx(sigma_1,y,sigma_s)$y
-        tmp/sum(tmp)/{2*max_sigma/{length_sigma-1}}
-      }else{
-        return(NA)
-      }
-    }else{
-      return(NA)
-    }
-  }  
-  # Given a mat of observed & expected, return a list of CDR & FWR pdf for selection
-  computeBayesianScore <- function(mat, test="Focused", max_sigma=20,length_sigma=4001){
-    flagOneSeq = F
-    if(nrow(mat)==1){
-      mat=rbind(mat,mat)
-      flagOneSeq = T
-    }
-    if(test=="Focused"){
-      #CDR
-      P = c(apply(mat[,c(5,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(1,2,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,1],0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(7,6,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(3,2,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,3],0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-    
-    if(test=="Local"){
-      #CDR
-      P = c(apply(mat[,c(5,6)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(1,2)],1,function(x){(sum(x))}),0)
-      X = c(mat[,1],0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(7,8)],1,function(x){(x[1]/sum(x))}),0.5)
-      N = c(apply(mat[,c(3,4)],1,function(x){(sum(x))}),0)
-      X = c(mat[,3],0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    } 
-     
-    if(test=="Imbalanced"){
-      #CDR
-      P = c(apply(mat[,c(5:8)],1,function(x){((x[1]+x[2])/sum(x))}),0.5)
-      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(1:2)],1,function(x){(sum(x))}),0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(5:8)],1,function(x){((x[3]+x[4])/sum(x))}),0.5)
-      N = c(apply(mat[,c(1:4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(3:4)],1,function(x){(sum(x))}),0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-
-    if(test=="ImbalancedSilent"){
-      #CDR
-      P = c(apply(mat[,c(6,8)],1,function(x){((x[1])/sum(x))}),0.5)
-      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(2,4)],1,function(x){(x[1])}),0)
-      bayesCDR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesCDR = bayesCDR[-length(bayesCDR)]
-  
-      #FWR
-      P = c(apply(mat[,c(6,8)],1,function(x){((x[2])/sum(x))}),0.5)
-      N = c(apply(mat[,c(2,4)],1,function(x){(sum(x))}),0)
-      X = c(apply(mat[,c(2,4)],1,function(x){(x[2])}),0)
-      bayesFWR = apply(cbind(X,N,P),1,function(x){calculate_bayes(x=x[1],N=x[2],p=x[3],max_sigma=max_sigma,length_sigma=length_sigma)})    
-      bayesFWR = bayesFWR[-length(bayesFWR)]     
-    }
-        
-    if(flagOneSeq==T){
-      bayesCDR = bayesCDR[1]  
-      bayesFWR = bayesFWR[1]
-    }
-    return( list("CDR"=bayesCDR, "FWR"=bayesFWR) )
-  }
-  
-  ##Covolution
-  break2chunks<-function(G=1000){
-  base<-2^round(log(sqrt(G),2),0)
-  return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base)))
-  }  
-  
-  PowersOfTwo <- function(G=100){
-    exponents <- array()
-    i = 0
-    while(G > 0){
-      i=i+1
-      exponents[i] <- floor( log2(G) )
-      G <- G-2^exponents[i]
-    }
-    return(exponents)
-  }
-  
-  convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){
-    G = ncol(cons)
-    if(G>1){
-      for(gen in log(G,2):1){
-        ll<-seq(from=2,to=2^gen,by=2)
-        sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)})
-      }
-    }
-    return( cons[,1] )
-  }
-  
-  convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){
-    if(length(ncol(cons))) G<-ncol(cons)
-    groups <- PowersOfTwo(G)
-    matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G )
-    startIndex = 1
-    for( i in 1:length(groups) ){
-      stopIndex <- 2^groups[i] + startIndex - 1
-      if(stopIndex!=startIndex){
-        matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma )
-        startIndex = stopIndex + 1
-      }
-      else {
-        if(G>1) matG[,i] <- cons[,startIndex:stopIndex]
-        else matG[,i] <- cons
-        #startIndex = stopIndex + 1
-      }
-    }
-    return( list( matG, groups ) )
-  }
-  
-  weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
-    lx<-length(x)
-    ly<-length(y)
-    if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
-      if(w<1){
-        y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
-        x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
-        lx<-length(x1)
-        ly<-length(y1)
-      }
-      else {
-        y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
-        x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
-        lx<-length(x1)
-        ly<-length(y1)
-      }
-    }
-    else{
-      x1<-x
-      y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
-      ly<-length(y1)
-    }
-    tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
-    tmp[tmp<=0] = 0
-    return(tmp/sum(tmp))
-  }
-  
-  calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
-    matG <- listMatG[[1]]
-    groups <- listMatG[[2]]
-    i = 1
-    resConv <- matG[,i]
-    denom <- 2^groups[i]
-    if(length(groups)>1){
-      while( i<length(groups) ){
-        i = i + 1
-        resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
-        #cat({{2^groups[i]}/denom},"\n")
-        denom <- denom + 2^groups[i]
-      }
-    }
-    return(resConv)
-  }
-  
-  # Given a list of PDFs, returns a convoluted PDF    
-  groupPosteriors <- function( listPosteriors, max_sigma=20, length_sigma=4001 ,Threshold=2 ){  
-    listPosteriors = listPosteriors[ !is.na(listPosteriors) ]
-    Length_Postrior<-length(listPosteriors)
-    if(Length_Postrior>1 & Length_Postrior<=Threshold){
-      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
-      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
-      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }else if(Length_Postrior==1) return(listPosteriors[[1]])
-    else  if(Length_Postrior==0) return(NA)
-    else {
-      cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors))
-      y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma )
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }
-  }
-
-  fastConv<-function(cons, max_sigma=20, length_sigma=4001){
-    chunks<-break2chunks(G=ncol(cons))
-    if(ncol(cons)==3) chunks<-2:1
-    index_chunks_end <- cumsum(chunks)
-    index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1)
-    index_chunks <- cbind(index_chunks_start,index_chunks_end)
-    
-    case <- sum(chunks!=chunks[1])
-    if(case==1) End <- max(1,((length(index_chunks)/2)-1))
-    else End <- max(1,((length(index_chunks)/2)))
-    
-    firsts <- sapply(1:End,function(i){
-          	    indexes<-index_chunks[i,1]:index_chunks[i,2]
-          	    convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]]
-          	  })
-    if(case==0){
-    	result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) )
-    }else if(case==1){
-      last<-list(calculate_bayesGHelper(
-      convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] )
-                                      ),0)
-      result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts))
-      result<-calculate_bayesGHelper(
-        list(
-          cbind(
-          result_first,last[[1]]),
-          c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2))
-        )
-      )
-    }
-    return(as.vector(result))
-  }
-    
-  # Computes the 95% CI for a pdf
-  calcBayesCI <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
-    if(length(Pdf)!=length_sigma) return(NA)
-    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
-    cdf = cumsum(Pdf)
-    cdf = cdf/cdf[length(cdf)]  
-    return( c(sigma_s[findInterval(low,cdf)-1] , sigma_s[findInterval(up,cdf)]) ) 
-  }
-  
-  # Computes a mean for a pdf
-  calcBayesMean <- function(Pdf,max_sigma=20,length_sigma=4001){
-    if(length(Pdf)!=length_sigma) return(NA)
-    sigma_s=seq(-max_sigma,max_sigma,length.out=length_sigma)
-    norm = {length_sigma-1}/2/max_sigma
-    return( (Pdf%*%sigma_s/norm)  ) 
-  }
-  
-  # Returns the mean, and the 95% CI for a pdf
-  calcBayesOutputInfo <- function(Pdf,low=0.025,up=0.975,max_sigma=20, length_sigma=4001){
-    if(is.na(Pdf)) 
-     return(rep(NA,3))  
-    bCI = calcBayesCI(Pdf=Pdf,low=low,up=up,max_sigma=max_sigma,length_sigma=length_sigma)
-    bMean = calcBayesMean(Pdf=Pdf,max_sigma=max_sigma,length_sigma=length_sigma)
-    return(c(bMean, bCI))
-  }   
-
-  # Computes the p-value of a pdf
-  computeSigmaP <- function(Pdf, length_sigma=4001, max_sigma=20){
-    if(length(Pdf)>1){
-      norm = {length_sigma-1}/2/max_sigma
-      pVal = {sum(Pdf[1:{{length_sigma-1}/2}]) + Pdf[{{length_sigma+1}/2}]/2}/norm
-      if(pVal>0.5){
-        pVal = pVal-1
-      }
-      return(pVal)
-    }else{
-      return(NA)
-    }
-  }    
-  
-  # Compute p-value of two distributions
-  compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-  #print(c(length(dens1),length(dens2)))
-  if(length(dens1)>1 & length(dens2)>1 ){
-    dens1<-dens1/sum(dens1)
-    dens2<-dens2/sum(dens2)
-    cum2 <- cumsum(dens2)-dens2/2
-    tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
-    #print(tmp)
-    if(tmp>0.5)tmp<-tmp-1
-    return( tmp )
-    }
-    else {
-    return(NA)
-    }
-    #return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-  }  
-  
-  # get number of seqeunces contributing to the sigma (i.e. seqeunces with mutations)
-  numberOfSeqsWithMutations <- function(matMutations,test=1){
-    if(test==4)test=2
-    cdrSeqs <- 0
-    fwrSeqs <- 0    
-    if(test==1){#focused
-      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2,4)]) })
-      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4,2)]) })
-      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
-      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
-    }
-    if(test==2){#local
-      cdrMutations <- apply(matMutations, 1, function(x){ sum(x[c(1,2)]) })
-      fwrMutations <- apply(matMutations, 1, function(x){ sum(x[c(3,4)]) })
-      if( any(which(cdrMutations>0)) ) cdrSeqs <- sum(cdrMutations>0)
-      if( any(which(fwrMutations>0)) ) fwrSeqs <- sum(fwrMutations>0) 
-    }
-  return(c("CDR"=cdrSeqs, "FWR"=fwrSeqs))
-}  
-
-
-
-shadeColor <- function(sigmaVal=NA,pVal=NA){
-  if(is.na(sigmaVal) & is.na(pVal)) return(NA)
-  if(is.na(sigmaVal) & !is.na(pVal)) sigmaVal=sign(pVal)
-  if(is.na(pVal) || pVal==1 || pVal==0){
-    returnColor = "#FFFFFF";
-  }else{
-    colVal=abs(pVal);
-    
-    if(sigmaVal<0){      
-        if(colVal>0.1)
-          returnColor = "#CCFFCC";
-        if(colVal<=0.1)
-          returnColor = "#99FF99";
-        if(colVal<=0.050)
-          returnColor = "#66FF66";
-        if(colVal<=0.010)
-          returnColor = "#33FF33";
-        if(colVal<=0.005)
-          returnColor = "#00FF00";
-      
-    }else{
-      if(colVal>0.1)
-        returnColor = "#FFCCCC";
-      if(colVal<=0.1)
-        returnColor = "#FF9999";
-      if(colVal<=0.05)
-        returnColor = "#FF6666";
-      if(colVal<=0.01)
-        returnColor = "#FF3333";
-      if(colVal<0.005)
-        returnColor = "#FF0000";
-    }
-  }
-  
-  return(returnColor)
-}
-
-
-
-plotHelp <- function(xfrac=0.05,yfrac=0.05,log=FALSE){
-  if(!log){
-    x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
-    y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
-  }else {
-    if(log==2){
-      x = par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac
-      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
-    }
-    if(log==1){
-      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
-      y = par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac
-    }
-    if(log==3){
-      x = 10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac)
-      y = 10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac)
-    }
-  }
-  return(c("x"=x,"y"=y))
-}
-
-# SHMulation
-
-  # Based on targeting, introduce a single mutation & then update the targeting 
-  oneMutation <- function(){
-    # Pick a postion + mutation
-    posMutation = sample(1:(seqGermlineLen*4),1,replace=F,prob=as.vector(seqTargeting))
-    posNucNumb = ceiling(posMutation/4)                    # Nucleotide number
-    posNucKind = 4 - ( (posNucNumb*4) - posMutation )   # Nuc the position mutates to
-  
-    #mutate the simulation sequence
-    seqSimVec <-  s2c(seqSim)
-    seqSimVec[posNucNumb] <- NUCLEOTIDES[posNucKind]
-    seqSim <<-  c2s(seqSimVec)
-    
-    #update Mutability, Targeting & MutationsTypes
-    updateMutabilityNTargeting(posNucNumb)
-  
-    #return(c(posNucNumb,NUCLEOTIDES[posNucKind])) 
-    return(posNucNumb)
-  }  
-  
-  updateMutabilityNTargeting <- function(position){
-    min_i<-max((position-2),1)
-    max_i<-min((position+2),nchar(seqSim))
-    min_ii<-min(min_i,3)
-    
-    #mutability - update locally
-    seqMutability[(min_i):(max_i)] <<- computeMutabilities(substr(seqSim,position-4,position+4))[(min_ii):(max_i-min_i+min_ii)]
-    
-    
-    #targeting - compute locally
-    seqTargeting[,min_i:max_i] <<- computeTargeting(substr(seqSim,min_i,max_i),seqMutability[min_i:max_i])                 
-    seqTargeting[is.na(seqTargeting)] <<- 0
-    #mutCodonPos = getCodonPos(position) 
-    mutCodonPos = seq(getCodonPos(min_i)[1],getCodonPos(max_i)[3])
-    #cat(mutCodonPos,"\n")                                                  
-    mutTypeCodon = getCodonPos(position)
-    seqMutationTypes[,mutTypeCodon] <<- computeMutationTypesFast( substr(seqSim,mutTypeCodon[1],mutTypeCodon[3]) ) 
-    # Stop = 0
-    if(any(seqMutationTypes[,mutCodonPos]=="Stop",na.rm=T )){
-      seqTargeting[,mutCodonPos][seqMutationTypes[,mutCodonPos]=="Stop"] <<- 0
-    }
-    
-  
-    #Selection
-    selectedPos = (min_i*4-4)+(which(seqMutationTypes[,min_i:max_i]=="R"))  
-    # CDR
-    selectedCDR = selectedPos[which(matCDR[selectedPos]==T)]
-    seqTargeting[selectedCDR] <<-  seqTargeting[selectedCDR] *  exp(selCDR)
-    seqTargeting[selectedCDR] <<- seqTargeting[selectedCDR]/baseLineCDR_K
-        
-    # FWR
-    selectedFWR = selectedPos[which(matFWR[selectedPos]==T)]
-    seqTargeting[selectedFWR] <<-  seqTargeting[selectedFWR] *  exp(selFWR)
-    seqTargeting[selectedFWR] <<- seqTargeting[selectedFWR]/baseLineFWR_K      
-    
-  }  
-  
-
-
-  # Validate the mutation: if the mutation has not been sampled before validate it, else discard it.   
-  validateMutation <- function(){  
-    if( !(mutatedPos%in%mutatedPositions) ){ # if it's a new mutation
-      uniqueMutationsIntroduced <<- uniqueMutationsIntroduced + 1
-      mutatedPositions[uniqueMutationsIntroduced] <<-  mutatedPos  
-    }else{
-      if(substr(seqSim,mutatedPos,mutatedPos)==substr(seqGermline,mutatedPos,mutatedPos)){ # back to germline mutation
-        mutatedPositions <<-  mutatedPositions[-which(mutatedPositions==mutatedPos)]
-        uniqueMutationsIntroduced <<-  uniqueMutationsIntroduced - 1
-      }      
-    }
-  }  
-  
-  
-  
-  # Places text (labels) at normalized coordinates 
-  myaxis <- function(xfrac=0.05,yfrac=0.05,log=FALSE,w="text",cex=1,adj=1,thecol="black"){
-    par(xpd=TRUE)
-    if(!log)
-      text(par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,w,cex=cex,adj=adj,col=thecol)
-    else {
-    if(log==2)
-    text(
-      par()$usr[1]-(par()$usr[2]-par()$usr[1])*xfrac,
-      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
-      w,cex=cex,adj=adj,col=thecol)
-    if(log==1)
-      text(
-      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
-      par()$usr[4]+(par()$usr[4]-par()$usr[3])*yfrac,
-      w,cex=cex,adj=adj,col=thecol)
-    if(log==3)
-      text(
-      10^((par()$usr[1])-((par()$usr[2])-(par()$usr[1]))*xfrac),
-      10^((par()$usr[4])+((par()$usr[4])-(par()$usr[3]))*yfrac),
-      w,cex=cex,adj=adj,col=thecol)
-    }
-    par(xpd=FALSE)
-  }
-  
-  
-  
-  # Count the mutations in a sequence
-  analyzeMutations <- function( inputMatrixIndex, model = 0 , multipleMutation=0, seqWithStops=0){
-
-    paramGL = s2c(matInput[inputMatrixIndex,2])
-    paramSeq = s2c(matInput[inputMatrixIndex,1])            
-    
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}        
-    mutations_val = paramGL != paramSeq   
-    
-    if(any(mutations_val)){
-      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-                          
-      pos<- mutationPos
-      pos_array<-array(sapply(pos,getCodonPos))
-      codonGL =  paramGL[pos_array]
-      codonSeqWhole =  paramSeq[pos_array]
-      codonSeq = sapply(pos,function(x){
-                                seqP = paramGL[getCodonPos(x)]
-                                muCodonPos = {x-1}%%3+1 
-                                seqP[muCodonPos] = paramSeq[x]
-                                return(seqP)
-                              })
-      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
-      Seqcodons =   apply(codonSeq,2,c2s)
-      
-      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-      names(mutationInfo) = mutationPos     
-      
-      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
-      names(mutationInfoWhole) = mutationPos
-
-      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
-      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-      
-      if(any(!is.na(mutationInfo))){       
-  
-        #Filter based on Stop (at the codon level)
-        if(seqWithStops==1){
-          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
-          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
-          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
-        }else{
-          countStops = sum(mutationInfoWhole=="Stop")
-          if(seqWithStops==2 & countStops==0) mutationInfo = NA
-          if(seqWithStops==3 & countStops>0) mutationInfo = NA
-        }         
-        
-        if(any(!is.na(mutationInfo))){
-          #Filter mutations based on multipleMutation
-          if(multipleMutation==1 & !is.na(mutationInfo)){
-            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
-            tableMutationCodons <- table(mutationCodons)
-            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
-            if(any(codonsWithMultipleMutations)){
-              #remove the nucleotide mutations in the codons with multiple mutations
-              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
-              #replace those codons with Ns in the input sequence
-              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
-              matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
-            }
-          }
-
-          #Filter mutations based on the model
-          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
-            
-            if(model==1 & !is.na(mutationInfo)){
-              mutationInfo <- mutationInfo[mutationInfo=="S"]
-            }  
-            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(mutationInfo)
-            else return(NA)
-          }else{
-            return(NA)
-          }
-        }else{
-          return(NA)
-        }
-        
-        
-      }else{
-        return(NA)
-      }
-    
-    
-    }else{
-      return (NA)
-    }    
-  }  
-
-   analyzeMutationsFixed <- function( inputArray, model = 0 , multipleMutation=0, seqWithStops=0){
-
-    paramGL = s2c(inputArray[2])
-    paramSeq = s2c(inputArray[1])            
-    inputSeq <- inputArray[1]
-    #if( any(paramSeq=="N") ){
-    #  gapPos_Seq =  which(paramSeq=="N")
-    #  gapPos_Seq_ToReplace = gapPos_Seq[paramGL[gapPos_Seq] != "N"]
-    #  paramSeq[gapPos_Seq_ToReplace] =  paramGL[gapPos_Seq_ToReplace]
-    #}        
-    mutations_val = paramGL != paramSeq   
-    
-    if(any(mutations_val)){
-      mutationPos = which(mutations_val)#{1:length(mutations_val)}[mutations_val]  
-      length_mutations =length(mutationPos)
-      mutationInfo = rep(NA,length_mutations)
-                          
-      pos<- mutationPos
-      pos_array<-array(sapply(pos,getCodonPos))
-      codonGL =  paramGL[pos_array]
-      codonSeqWhole =  paramSeq[pos_array]
-      codonSeq = sapply(pos,function(x){
-                                seqP = paramGL[getCodonPos(x)]
-                                muCodonPos = {x-1}%%3+1 
-                                seqP[muCodonPos] = paramSeq[x]
-                                return(seqP)
-                              })
-      GLcodons =  apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s)
-      SeqcodonsWhole =  apply(matrix(codonSeqWhole,length_mutations,3,byrow=TRUE),1,c2s)      
-      Seqcodons =   apply(codonSeq,2,c2s)
-      
-      mutationInfo = apply(rbind(GLcodons , Seqcodons),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})     
-      names(mutationInfo) = mutationPos     
-      
-      mutationInfoWhole = apply(rbind(GLcodons , SeqcodonsWhole),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})           
-      names(mutationInfoWhole) = mutationPos
-
-      mutationInfo <- mutationInfo[!is.na(mutationInfo)]
-      mutationInfoWhole <- mutationInfoWhole[!is.na(mutationInfoWhole)]
-      
-      if(any(!is.na(mutationInfo))){       
-  
-        #Filter based on Stop (at the codon level)
-        if(seqWithStops==1){
-          nucleotidesAtStopCodons = names(mutationInfoWhole[mutationInfoWhole!="Stop"])
-          mutationInfo = mutationInfo[nucleotidesAtStopCodons]
-          mutationInfoWhole = mutationInfo[nucleotidesAtStopCodons]
-        }else{
-          countStops = sum(mutationInfoWhole=="Stop")
-          if(seqWithStops==2 & countStops==0) mutationInfo = NA
-          if(seqWithStops==3 & countStops>0) mutationInfo = NA
-        }         
-        
-        if(any(!is.na(mutationInfo))){
-          #Filter mutations based on multipleMutation
-          if(multipleMutation==1 & !is.na(mutationInfo)){
-            mutationCodons = getCodonNumb(as.numeric(names(mutationInfoWhole)))
-            tableMutationCodons <- table(mutationCodons)
-            codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1]))
-            if(any(codonsWithMultipleMutations)){
-              #remove the nucleotide mutations in the codons with multiple mutations
-              mutationInfo <- mutationInfo[!(mutationCodons %in% codonsWithMultipleMutations)]
-              #replace those codons with Ns in the input sequence
-              paramSeq[unlist(lapply(codonsWithMultipleMutations, getCodonNucs))] = "N"
-              #matInput[inputMatrixIndex,1] <<- c2s(paramSeq)
-              inputSeq <- c2s(paramSeq)
-            }
-          }
-          
-          #Filter mutations based on the model
-          if(any(mutationInfo)==T | is.na(any(mutationInfo))){        
-            
-            if(model==1 & !is.na(mutationInfo)){
-              mutationInfo <- mutationInfo[mutationInfo=="S"]
-            }  
-            if(any(mutationInfo)==T | is.na(any(mutationInfo))) return(list(mutationInfo,inputSeq))
-            else return(list(NA,inputSeq))
-          }else{
-            return(list(NA,inputSeq))
-          }
-        }else{
-          return(list(NA,inputSeq))
-        }
-        
-        
-      }else{
-        return(list(NA,inputSeq))
-      }
-    
-    
-    }else{
-      return (list(NA,inputSeq))
-    }    
-  }  
- 
-  # triMutability Background Count
-  buildMutabilityModel <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-    
-    #rowOrigMatInput = matInput[inputMatrixIndex,]    
-    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
-    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
-    #matInput[inputMatrixIndex,] <<- cbind(seqInput,seqGL)
-    tempInput <- cbind(seqInput,seqGL)
-    seqLength = nchar(seqGL)      
-    list_analyzeMutationsFixed<- analyzeMutationsFixed(tempInput, model, multipleMutation, seqWithStops)
-    mutationCount <- list_analyzeMutationsFixed[[1]]
-    seqInput <- list_analyzeMutationsFixed[[2]]
-    BackgroundMatrix = mutabilityMatrix
-    MutationMatrix = mutabilityMatrix    
-    MutationCountMatrix = mutabilityMatrix    
-    if(!is.na(mutationCount)){
-      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
-                  
-        fivermerStartPos = 1:(seqLength-4)
-        fivemerLength <- length(fivermerStartPos)
-        fivemerGL <- substr(rep(seqGL,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-        fivemerSeq <- substr(rep(seqInput,length(fivermerStartPos)),(fivermerStartPos),(fivermerStartPos+4))
-    
-        #Background
-        for(fivemerIndex in 1:fivemerLength){
-          fivemer = fivemerGL[fivemerIndex]
-          if(!any(grep("N",fivemer))){
-            fivemerCodonPos = fivemerCodon(fivemerIndex)
-            fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
-            fivemerReadingFrameCodonInputSeq = substr(fivemerSeq[fivemerIndex],fivemerCodonPos[1],fivemerCodonPos[3])          
-            
-            # All mutations model
-            #if(!any(grep("N",fivemerReadingFrameCodon))){
-              if(model==0){
-                if(stopMutations==0){
-                  if(!any(grep("N",fivemerReadingFrameCodonInputSeq)))
-                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + 1)              
-                }else{
-                  if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" ){
-                    positionWithinCodon = which(fivemerCodonPos==3)#positionsWithinCodon[(fivemerCodonPos[1]%%3)+1]
-                    BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probNonStopMutations[fivemerReadingFrameCodon,positionWithinCodon])
-                  }
-                }
-              }else{ # Only silent mutations
-                if( !any(grep("N",fivemerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(fivemerReadingFrameCodon)!="*" & translateCodonToAminoAcid(fivemerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(fivemerReadingFrameCodon)){
-                  positionWithinCodon = which(fivemerCodonPos==3)
-                  BackgroundMatrix[fivemer] <- (BackgroundMatrix[fivemer] + probSMutations[fivemerReadingFrameCodon,positionWithinCodon])
-                }
-              }
-            #}
-          }
-        }
-        
-        #Mutations
-        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
-        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
-        mutationPositions = as.numeric(names(mutationCount))
-        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        countMutations = 0 
-        for(mutationPosition in mutationPositions){
-          fivemerIndex = mutationPosition-2
-          fivemer = fivemerSeq[fivemerIndex]
-          GLfivemer = fivemerGL[fivemerIndex]
-          fivemerCodonPos = fivemerCodon(fivemerIndex)
-          fivemerReadingFrameCodon = substr(fivemer,fivemerCodonPos[1],fivemerCodonPos[3]) 
-          fivemerReadingFrameCodonGL = substr(GLfivemer,fivemerCodonPos[1],fivemerCodonPos[3])
-          if(!any(grep("N",fivemer)) & !any(grep("N",GLfivemer))){
-            if(model==0){
-                countMutations = countMutations + 1              
-                MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + 1)
-                MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)             
-            }else{
-              if( translateCodonToAminoAcid(fivemerReadingFrameCodonGL)!="*" ){
-                  countMutations = countMutations + 1
-                  positionWithinCodon = which(fivemerCodonPos==3)
-                  glNuc =  substr(fivemerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
-                  inputNuc =  substr(fivemerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
-                  MutationMatrix[GLfivemer] <- (MutationMatrix[GLfivemer] + substitution[glNuc,inputNuc])
-                  MutationCountMatrix[GLfivemer] <- (MutationCountMatrix[GLfivemer] + 1)                                    
-              }                
-            }                  
-          }              
-        }
-        
-        seqMutability = MutationMatrix/BackgroundMatrix
-        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
-        #cat(inputMatrixIndex,"\t",countMutations,"\n")
-        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
-        
-      }        
-    }
-  
-  }  
-  
-  #Returns the codon position containing the middle nucleotide
-  fivemerCodon <- function(fivemerIndex){
-    codonPos = list(2:4,1:3,3:5)
-    fivemerType = fivemerIndex%%3
-    return(codonPos[[fivemerType+1]])
-  }
-
-  #returns probability values for one mutation in codons resulting in R, S or Stop
-  probMutations <- function(typeOfMutation){    
-    matMutationProb <- matrix(0,ncol=3,nrow=125,dimnames=list(words(alphabet = c(NUCLEOTIDES,"N"), length=3),c(1:3)))   
-    for(codon in rownames(matMutationProb)){
-        if( !any(grep("N",codon)) ){
-        for(muPos in 1:3){
-          matCodon = matrix(rep(s2c(codon),3),nrow=3,ncol=3,byrow=T)
-          glNuc = matCodon[1,muPos]
-          matCodon[,muPos] = canMutateTo(glNuc) 
-          substitutionRate = substitution[glNuc,matCodon[,muPos]]
-          typeOfMutations = apply(rbind(rep(codon,3),apply(matCodon,1,c2s)),2,function(x){mutationType(c2s(x[1]),c2s(x[2]))})        
-          matMutationProb[codon,muPos] <- sum(substitutionRate[typeOfMutations==typeOfMutation])
-        }
-      }
-    }
-    
-    return(matMutationProb) 
-  }
-  
-  
-  
-  
-#Mapping Trinucleotides to fivemers
-mapTriToFivemer <- function(triMutability=triMutability_Literature_Human){
-  rownames(triMutability) <- triMutability_Names
-  Fivemer<-rep(NA,1024)
-  names(Fivemer)<-words(alphabet=NUCLEOTIDES,length=5)
-  Fivemer<-sapply(names(Fivemer),function(Word)return(sum( c(triMutability[substring(Word,3,5),1],triMutability[substring(Word,2,4),2],triMutability[substring(Word,1,3),3]),na.rm=TRUE)))
-  Fivemer<-Fivemer/sum(Fivemer)
-  return(Fivemer)
-}
-
-collapseFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)weighted.mean(Fivemer[i],Weights[i],na.rm=TRUE))
-}
-
-
-
-CountFivemerToTri<-function(Fivemer,Weights=MutabilityWeights,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)sum(Weights[i],na.rm=TRUE))
-}
-
-#Uses the real counts of the mutated fivemers
-CountFivemerToTri2<-function(Fivemer,Counts=MutabilityCounts,position=1,NUC="A"){
-  Indices<-substring(names(Fivemer),3,3)==NUC
-  Factors<-substring(names(Fivemer[Indices]),(4-position),(6-position))
-  tapply(which(Indices),Factors,function(i)sum(Counts[i],na.rm=TRUE))
-}
-
-bootstrap<-function(x=c(33,12,21),M=10000,alpha=0.05){
-N<-sum(x)
-if(N){
-p<-x/N
-k<-length(x)-1
-tmp<-rmultinom(M, size = N, prob=p)
-tmp_p<-apply(tmp,2,function(y)y/N)
-(apply(tmp_p,1,function(y)quantile(y,c(alpha/2/k,1-alpha/2/k))))
-}
-else return(matrix(0,2,length(x)))
-}
-
-
-
-
-bootstrap2<-function(x=c(33,12,21),n=10,M=10000,alpha=0.05){
-
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))/n
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))/n
-(apply(tmp_p,1,function(z)quantile(z,c(alpha/2/(k-1),1-alpha/2/(k-1)))))
-}
-
-
-
-p_value<-function(x=c(33,12,21),M=100000,x_obs=c(2,5,3)){
-n=sum(x_obs)
-N<-sum(x)
-k<-length(x)
-y<-rep(1:k,x)
-tmp<-sapply(1:M,function(i)sample(y,n))
-if(n>1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[,j]==i)))
-if(n==1)tmp_p<-sapply(1:M,function(j)sapply(1:k,function(i)sum(tmp[j]==i)))
-tmp<-rbind(sapply(1:3,function(i)sum(tmp_p[i,]>=x_obs[i])/M),
-sapply(1:3,function(i)sum(tmp_p[i,]<=x_obs[i])/M))
-sapply(1:3,function(i){if(tmp[1,i]>=tmp[2,i])return(-tmp[2,i])else return(tmp[1,i])})
-}
-
-#"D:\\Sequences\\IMGT Germlines\\Human_SNPless_IGHJ.FASTA"
-# Remove SNPs from IMGT germline segment alleles
-generateUnambiguousRepertoire <- function(repertoireInFile,repertoireOutFile){
-  repertoireIn <- read.fasta(repertoireInFile, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
-  alleleNames <- sapply(names(repertoireIn),function(x)strsplit(x,"|",fixed=TRUE)[[1]][2])
-  SNPs <- tapply(repertoireIn,sapply(alleleNames,function(x)strsplit(x,"*",fixed=TRUE)[[1]][1]),function(x){
-    Indices<-NULL
-    for(i in 1:length(x)){
-      firstSeq = s2c(x[[1]])
-      iSeq = s2c(x[[i]])
-      Indices<-c(Indices,which(firstSeq[1:320]!=iSeq[1:320] & firstSeq[1:320]!="." & iSeq[1:320]!="."  ))
-    }
-    return(sort(unique(Indices)))
-  })
- repertoireOut <- repertoireIn
- repertoireOut <- lapply(names(repertoireOut), function(repertoireName){
-                                        alleleName <- strsplit(repertoireName,"|",fixed=TRUE)[[1]][2]
-                                        geneSegmentName <- strsplit(alleleName,"*",fixed=TRUE)[[1]][1]
-                                        alleleSeq <- s2c(repertoireOut[[repertoireName]])
-                                        alleleSeq[as.numeric(unlist(SNPs[geneSegmentName]))] <- "N"
-                                        alleleSeq <- c2s(alleleSeq)
-                                        repertoireOut[[repertoireName]] <- alleleSeq
-                                      })
-  names(repertoireOut) <- names(repertoireIn)
-  write.fasta(repertoireOut,names(repertoireOut),file.out=repertoireOutFile)                                               
-                                      
-}
-
-
-
-
-
-
-############
-groupBayes2 = function(indexes, param_resultMat){
-  
-  BayesGDist_Focused_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[4])}))
-  BayesGDist_Focused_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,2,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[2]+x[4])}))
-  #BayesGDist_Local_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2])}))
-  #BayesGDist_Local_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[3]+x[4])}))
-  #BayesGDist_Global_CDR = calculate_bayesG( x=param_resultMat[indexes,1], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[1]/(x[1]+x[2]+x[3]+x[4])}))
-  #BayesGDist_Global_FWR = calculate_bayesG( x=param_resultMat[indexes,3], N=apply(param_resultMat[indexes,c(1,2,3,4)],1,sum,na.rm=T), p=apply(param_resultMat[indexes,5:8],1,function(x){x[3]/(x[1]+x[2]+x[3]+x[4])}))
-  return ( list("BayesGDist_Focused_CDR"=BayesGDist_Focused_CDR,
-                "BayesGDist_Focused_FWR"=BayesGDist_Focused_FWR) )
-                #"BayesGDist_Local_CDR"=BayesGDist_Local_CDR,
-                #"BayesGDist_Local_FWR" = BayesGDist_Local_FWR))
-#                "BayesGDist_Global_CDR" = BayesGDist_Global_CDR,
-#                "BayesGDist_Global_FWR" = BayesGDist_Global_FWR) )
-
-
-}
-
-
-calculate_bayesG <- function( x=array(), N=array(), p=array(), max_sigma=20, length_sigma=4001){
-  G <- max(length(x),length(N),length(p))
-  x=array(x,dim=G)
-  N=array(N,dim=G)
-  p=array(p,dim=G)
-
-  indexOfZero = N>0 & p>0
-  N = N[indexOfZero]
-  x = x[indexOfZero]
-  p = p[indexOfZero]  
-  G <- length(x)
-  
-  if(G){
-    
-    cons<-array( dim=c(length_sigma,G) )
-    if(G==1) {
-    return(calculate_bayes(x=x[G],N=N[G],p=p[G],max_sigma=max_sigma,length_sigma=length_sigma))
-    }
-    else {
-      for(g in 1:G) cons[,g] <- calculate_bayes(x=x[g],N=N[g],p=p[g],max_sigma=max_sigma,length_sigma=length_sigma)
-      listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma)
-      y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma)
-      return( y/sum(y)/(2*max_sigma/(length_sigma-1)) )
-    }
-  }else{
-    return(NA)
-  }
-}
-
-
-calculate_bayesGHelper <- function( listMatG,length_sigma=4001 ){
-  matG <- listMatG[[1]]  
-  groups <- listMatG[[2]]
-  i = 1  
-  resConv <- matG[,i]
-  denom <- 2^groups[i]
-  if(length(groups)>1){
-    while( i<length(groups) ){
-      i = i + 1
-      resConv <- weighted_conv(resConv, matG[,i], w= {{2^groups[i]}/denom} ,length_sigma=length_sigma)
-      #cat({{2^groups[i]}/denom},"\n")
-      denom <- denom + 2^groups[i]
-    }
-  }
-  return(resConv)  
-}
-
-weighted_conv<-function(x,y,w=1,m=100,length_sigma=4001){
-lx<-length(x)
-ly<-length(y)
-if({lx<m}| {{lx*w}<m}| {{ly}<m}| {{ly*w}<m}){
-if(w<1){
-y1<-approx(1:ly,y,seq(1,ly,length.out=m))$y
-x1<-approx(1:lx,x,seq(1,lx,length.out=m/w))$y
-lx<-length(x1)
-ly<-length(y1)
-}
-else {
-y1<-approx(1:ly,y,seq(1,ly,length.out=m*w))$y
-x1<-approx(1:lx,x,seq(1,lx,length.out=m))$y
-lx<-length(x1)
-ly<-length(y1)
-}
-}
-else{
-x1<-x
-y1<-approx(1:ly,y,seq(1,ly,length.out=floor(lx*w)))$y
-ly<-length(y1)
-}
-tmp<-approx(x=1:(lx+ly-1),y=convolve(x1,rev(y1),type="open"),xout=seq(1,lx+ly-1,length.out=length_sigma))$y
-tmp[tmp<=0] = 0 
-return(tmp/sum(tmp))
-}
-
-########################
-
-
-
-
-mutabilityMatrixONE<-rep(0,4)
-names(mutabilityMatrixONE)<-NUCLEOTIDES
-
-  # triMutability Background Count
-  buildMutabilityModelONE <- function( inputMatrixIndex, model=0 , multipleMutation=0, seqWithStops=0, stopMutations=0){
-    
-    #rowOrigMatInput = matInput[inputMatrixIndex,]    
-    seqGL =  gsub("-", "", matInput[inputMatrixIndex,2])
-    seqInput = gsub("-", "", matInput[inputMatrixIndex,1])    
-    matInput[inputMatrixIndex,] <<- c(seqInput,seqGL)
-    seqLength = nchar(seqGL)      
-    mutationCount <- analyzeMutations(inputMatrixIndex, model, multipleMutation, seqWithStops)
-    BackgroundMatrix = mutabilityMatrixONE
-    MutationMatrix = mutabilityMatrixONE    
-    MutationCountMatrix = mutabilityMatrixONE    
-    if(!is.na(mutationCount)){
-      if((stopMutations==0 & model==0) | (stopMutations==1 & (sum(mutationCount=="Stop")<length(mutationCount))) | (model==1 & (sum(mutationCount=="S")>0)) ){ 
-                  
-#         ONEmerStartPos = 1:(seqLength)
-#         ONEmerLength <- length(ONEmerStartPos)
-        ONEmerGL <- s2c(seqGL)
-        ONEmerSeq <- s2c(seqInput)
-    
-        #Background
-        for(ONEmerIndex in 1:seqLength){
-          ONEmer = ONEmerGL[ONEmerIndex]
-          if(ONEmer!="N"){
-            ONEmerCodonPos = getCodonPos(ONEmerIndex)
-            ONEmerReadingFrameCodon = c2s(ONEmerGL[ONEmerCodonPos]) 
-            ONEmerReadingFrameCodonInputSeq = c2s(ONEmerSeq[ONEmerCodonPos] )         
-            
-            # All mutations model
-            #if(!any(grep("N",ONEmerReadingFrameCodon))){
-              if(model==0){
-                if(stopMutations==0){
-                  if(!any(grep("N",ONEmerReadingFrameCodonInputSeq)))
-                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + 1)              
-                }else{
-                  if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*"){
-                    positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)#positionsWithinCodon[(ONEmerCodonPos[1]%%3)+1]
-                    BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probNonStopMutations[ONEmerReadingFrameCodon,positionWithinCodon])
-                  }
-                }
-              }else{ # Only silent mutations
-                if( !any(grep("N",ONEmerReadingFrameCodonInputSeq)) & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)!="*" & translateCodonToAminoAcid(ONEmerReadingFrameCodonInputSeq)==translateCodonToAminoAcid(ONEmerReadingFrameCodon) ){
-                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
-                  BackgroundMatrix[ONEmer] <- (BackgroundMatrix[ONEmer] + probSMutations[ONEmerReadingFrameCodon,positionWithinCodon])
-                }
-              }
-            }
-          }
-        }
-        
-        #Mutations
-        if(stopMutations==1) mutationCount = mutationCount[mutationCount!="Stop"]
-        if(model==1) mutationCount = mutationCount[mutationCount=="S"]  
-        mutationPositions = as.numeric(names(mutationCount))
-        mutationCount = mutationCount[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        mutationPositions =  mutationPositions[mutationPositions>2 & mutationPositions<(seqLength-1)]
-        countMutations = 0 
-        for(mutationPosition in mutationPositions){
-          ONEmerIndex = mutationPosition
-          ONEmer = ONEmerSeq[ONEmerIndex]
-          GLONEmer = ONEmerGL[ONEmerIndex]
-          ONEmerCodonPos = getCodonPos(ONEmerIndex)
-          ONEmerReadingFrameCodon = c2s(ONEmerSeq[ONEmerCodonPos])  
-          ONEmerReadingFrameCodonGL =c2s(ONEmerGL[ONEmerCodonPos])  
-          if(!any(grep("N",ONEmer)) & !any(grep("N",GLONEmer))){
-            if(model==0){
-                countMutations = countMutations + 1              
-                MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + 1)
-                MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)             
-            }else{
-              if( translateCodonToAminoAcid(ONEmerReadingFrameCodonGL)!="*" ){
-                  countMutations = countMutations + 1
-                  positionWithinCodon = which(ONEmerCodonPos==ONEmerIndex)
-                  glNuc =  substr(ONEmerReadingFrameCodonGL,positionWithinCodon,positionWithinCodon)
-                  inputNuc =  substr(ONEmerReadingFrameCodon,positionWithinCodon,positionWithinCodon)
-                  MutationMatrix[GLONEmer] <- (MutationMatrix[GLONEmer] + substitution[glNuc,inputNuc])
-                  MutationCountMatrix[GLONEmer] <- (MutationCountMatrix[GLONEmer] + 1)                                    
-              }                
-            }                  
-          }              
-        }
-        
-        seqMutability = MutationMatrix/BackgroundMatrix
-        seqMutability = seqMutability/sum(seqMutability,na.rm=TRUE)
-        #cat(inputMatrixIndex,"\t",countMutations,"\n")
-        return(list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix, "BackgroundMatrix"=BackgroundMatrix))      
-#         tmp<-list("seqMutability"  = seqMutability,"numbMutations" = countMutations,"seqMutabilityCount" = MutationCountMatrix)
-      }        
-    }
-  
-################
-# $Id: trim.R 989 2006-10-29 15:28:26Z ggorjan $
-
-trim <- function(s, recode.factor=TRUE, ...)
-  UseMethod("trim", s)
-
-trim.default <- function(s, recode.factor=TRUE, ...)
-  s
-
-trim.character <- function(s, recode.factor=TRUE, ...)
-{
-  s <- sub(pattern="^ +", replacement="", x=s)
-  s <- sub(pattern=" +$", replacement="", x=s)
-  s
-}
-
-trim.factor <- function(s, recode.factor=TRUE, ...)
-{
-  levels(s) <- trim(levels(s))
-  if(recode.factor) {
-    dots <- list(x=s, ...)
-    if(is.null(dots$sort)) dots$sort <- sort
-    s <- do.call(what=reorder.factor, args=dots)
-  }
-  s
-}
-
-trim.list <- function(s, recode.factor=TRUE, ...)
-  lapply(s, trim, recode.factor=recode.factor, ...)
-
-trim.data.frame <- function(s, recode.factor=TRUE, ...)
-{
-  s[] <- trim.list(s, recode.factor=recode.factor, ...)
-  s
-}
-#######################################
-# Compute the expected for each sequence-germline pair by codon 
-getExpectedIndividualByCodon <- function(matInput){    
-if( any(grep("multicore",search())) ){  
-  facGL <- factor(matInput[,2])
-  facLevels = levels(facGL)
-  LisGLs_MutabilityU = mclapply(1:length(facLevels),  function(x){
-    computeMutabilities(facLevels[x])
-  })
-  facIndex = match(facGL,facLevels)
-  
-  LisGLs_Mutability = mclapply(1:nrow(matInput),  function(x){
-    cInput = rep(NA,nchar(matInput[x,1]))
-    cInput[s2c(matInput[x,1])!="N"] = 1
-    LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-  })
-  
-  LisGLs_Targeting =  mclapply(1:dim(matInput)[1],  function(x){
-    computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-  })
-  
-  LisGLs_MutationTypes  = mclapply(1:length(matInput[,2]),function(x){
-    #print(x)
-    computeMutationTypes(matInput[x,2])
-  })
-  
-  LisGLs_R_Exp = mclapply(1:nrow(matInput),  function(x){
-    Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                        function(codonNucs){                                                      
-                          RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
-                          sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
-                        }
-    )                                                   
-  })
-  
-  LisGLs_S_Exp = mclapply(1:nrow(matInput),  function(x){
-    Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                        function(codonNucs){                                                      
-                          SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
-                          sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
-                        }
-    )                                                 
-  })                                                
-  
-  Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-  Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-  return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )
-  }else{
-    facGL <- factor(matInput[,2])
-    facLevels = levels(facGL)
-    LisGLs_MutabilityU = lapply(1:length(facLevels),  function(x){
-      computeMutabilities(facLevels[x])
-    })
-    facIndex = match(facGL,facLevels)
-    
-    LisGLs_Mutability = lapply(1:nrow(matInput),  function(x){
-      cInput = rep(NA,nchar(matInput[x,1]))
-      cInput[s2c(matInput[x,1])!="N"] = 1
-      LisGLs_MutabilityU[[facIndex[x]]] * cInput                                                   
-    })
-    
-    LisGLs_Targeting =  lapply(1:dim(matInput)[1],  function(x){
-      computeTargeting(matInput[x,2],LisGLs_Mutability[[x]])
-    })
-    
-    LisGLs_MutationTypes  = lapply(1:length(matInput[,2]),function(x){
-      #print(x)
-      computeMutationTypes(matInput[x,2])
-    })
-    
-    LisGLs_R_Exp = lapply(1:nrow(matInput),  function(x){
-      Exp_R <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                          function(codonNucs){                                                      
-                            RPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="R") 
-                            sum( LisGLs_Targeting[[x]][,codonNucs][RPos], na.rm=T ) 
-                          }
-      )                                                   
-    })
-    
-    LisGLs_S_Exp = lapply(1:nrow(matInput),  function(x){
-      Exp_S <-  rollapply(as.zoo(1:readEnd),width=3,by=3,
-                          function(codonNucs){                                                      
-                            SPos = which(LisGLs_MutationTypes[[x]][,codonNucs]=="S")   
-                            sum( LisGLs_Targeting[[x]][,codonNucs][SPos], na.rm=T )
-                          }
-      )                                                 
-    })                                                
-    
-    Exp_R = matrix(unlist(LisGLs_R_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-    Exp_S = matrix(unlist(LisGLs_S_Exp),nrow=nrow(matInput),ncol=readEnd/3,T)  
-    return( list( "Expected_R"=Exp_R, "Expected_S"=Exp_S) )    
-  }
-}
-
-# getObservedMutationsByCodon <- function(listMutations){
-#   numbSeqs <- length(listMutations) 
-#   obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-#   obsMu_S <- obsMu_R
-#   temp <- mclapply(1:length(listMutations), function(i){
-#     arrMutations = listMutations[[i]]
-#     RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-#     RPos <- sapply(RPos,getCodonNumb)                                                                    
-#     if(any(RPos)){
-#       tabR <- table(RPos)
-#       obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-#     }                                    
-#     
-#     SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-#     SPos <- sapply(SPos,getCodonNumb)
-#     if(any(SPos)){
-#       tabS <- table(SPos)
-#       obsMu_S[i,names(tabS)] <<- tabS
-#     }                                          
-#   }
-#   )
-#   return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
-# }
-
-getObservedMutationsByCodon <- function(listMutations){
-  numbSeqs <- length(listMutations) 
-  obsMu_R <- matrix(0,nrow=numbSeqs,ncol=readEnd/3,dimnames=list(c(1:numbSeqs),c(1:(readEnd/3))))
-  obsMu_S <- obsMu_R
-  temp <- lapply(1:length(listMutations), function(i){
-    arrMutations = listMutations[[i]]
-    RPos = as.numeric(names(arrMutations)[arrMutations=="R"])
-    RPos <- sapply(RPos,getCodonNumb)                                                                    
-    if(any(RPos)){
-      tabR <- table(RPos)
-      obsMu_R[i,as.numeric(names(tabR))] <<- tabR
-    }                                    
-    
-    SPos = as.numeric(names(arrMutations)[arrMutations=="S"])
-    SPos <- sapply(SPos,getCodonNumb)
-    if(any(SPos)){
-      tabS <- table(SPos)
-      obsMu_S[i,names(tabS)] <<- tabS
-    }                                          
-  }
-  )
-  return( list( "Observed_R"=obsMu_R, "Observed_S"=obsMu_S) ) 
-}
-
--- a/tmp/baseline/Baseline_Main.r	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,388 +0,0 @@
-#########################################################################################
-# License Agreement
-# 
-# THIS WORK IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE 
-# ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER 
-# APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE 
-# OR COPYRIGHT LAW IS PROHIBITED.
-# 
-# BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE 
-# BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED 
-# TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN 
-# CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
-#
-# BASELIne: Bayesian Estimation of Antigen-Driven Selection in Immunoglobulin Sequences
-# Coded by: Mohamed Uduman & Gur Yaari
-# Copyright 2012 Kleinstein Lab
-# Version: 1.3 (01/23/2014)
-#########################################################################################
-
-op <- options();
-options(showWarnCalls=FALSE, showErrorCalls=FALSE, warn=-1)
-library('seqinr')
-if( F & Sys.info()[1]=="Linux"){
-  library("multicore")
-}
-
-# Load functions and initialize global variables
-source("Baseline_Functions.r")
-
-# Initialize parameters with user provided arguments
-  arg <- commandArgs(TRUE)                       
-  #arg = c(2,1,5,5,0,1,"1:26:38:55:65:104:116", "test.fasta","","sample")
-  #arg = c(1,1,5,5,0,1,"1:38:55:65:104:116:200", "test.fasta","","sample")
-  #arg = c(1,1,5,5,1,1,"1:26:38:55:65:104:116", "/home/mu37/Wu/Wu_Cloned_gapped_sequences_D-masked.fasta","/home/mu37/Wu/","Wu")
-  testID <- as.numeric(arg[1])                    # 1 = Focused, 2 = Local
-  species <- as.numeric(arg[2])                   # 1 = Human. 2 = Mouse
-  substitutionModel <- as.numeric(arg[3])         # 0 = Uniform substitution, 1 = Smith DS et al. 1996, 5 = FiveS
-  mutabilityModel <- as.numeric(arg[4])           # 0 = Uniform mutablity, 1 = Tri-nucleotide (Shapiro GS et al. 2002)  , 5 = FiveS
-  clonal <- as.numeric(arg[5])                    # 0 = Independent sequences, 1 = Clonally related, 2 = Clonally related & only non-terminal mutations
-  fixIndels <- as.numeric(arg[6])                 # 0 = Do nothing, 1 = Try and fix Indels
-  region <- as.numeric(strsplit(arg[7],":")[[1]]) # StartPos:LastNucleotideF1:C1:F2:C2:F3:C3
-  inputFilePath <- arg[8]                         # Full path to input file
-  outputPath <- arg[9]                            # Full path to location of output files
-  outputID <- arg[10]                             # ID for session output  
-  
-
-  if(testID==5){
-    traitChangeModel <- 1
-    if( !is.na(any(arg[11])) ) traitChangeModel <- as.numeric(arg[11])    # 1 <- Chothia 1998
-    initializeTraitChange(traitChangeModel)    
-  }
-  
-# Initialize other parameters/variables
-    
-  # Initialzie the codon table ( definitions of R/S )
-  computeCodonTable(testID) 
-
-  # Initialize   
-  # Test Name
-  testName<-"Focused"
-  if(testID==2) testName<-"Local"
-  if(testID==3) testName<-"Imbalanced"    
-  if(testID==4) testName<-"ImbalancedSilent"    
-    
-  # Indel placeholders initialization
-  indelPos <- NULL
-  delPos <- NULL
-  insPos <- NULL
-
-  # Initialize in Tranistion & Mutability matrixes
-  substitution <- initializeSubstitutionMatrix(substitutionModel,species)
-  mutability <- initializeMutabilityMatrix(mutabilityModel,species)
-  
-  # FWR/CDR boundaries
-  flagTrim <- F
-  if( is.na(region[7])){
-    flagTrim <- T
-    region[7]<-region[6]
-  }
-  readStart = min(region,na.rm=T)
-  readEnd = max(region,na.rm=T)
-  if(readStart>1){
-    region = region - (readStart - 1)
-  }
-  region_Nuc = c( (region[1]*3-2) , (region[2:7]*3) )
-  region_Cod = region
-  
-  readStart = (readStart*3)-2
-  readEnd = (readEnd*3)
-    
-    FWR_Nuc <- c( rep(TRUE,(region_Nuc[2])),
-                  rep(FALSE,(region_Nuc[3]-region_Nuc[2])),
-                  rep(TRUE,(region_Nuc[4]-region_Nuc[3])),
-                  rep(FALSE,(region_Nuc[5]-region_Nuc[4])),
-                  rep(TRUE,(region_Nuc[6]-region_Nuc[5])),
-                  rep(FALSE,(region_Nuc[7]-region_Nuc[6]))
-                )
-    CDR_Nuc <- (1-FWR_Nuc)
-    CDR_Nuc <- as.logical(CDR_Nuc)
-    FWR_Nuc_Mat <- matrix( rep(FWR_Nuc,4), ncol=length(FWR_Nuc), nrow=4, byrow=T)
-    CDR_Nuc_Mat <- matrix( rep(CDR_Nuc,4), ncol=length(CDR_Nuc), nrow=4, byrow=T)
-    
-    FWR_Codon <- c( rep(TRUE,(region[2])),
-                  rep(FALSE,(region[3]-region[2])),
-                  rep(TRUE,(region[4]-region[3])),
-                  rep(FALSE,(region[5]-region[4])),
-                  rep(TRUE,(region[6]-region[5])),
-                  rep(FALSE,(region[7]-region[6]))
-                )
-    CDR_Codon <- (1-FWR_Codon)
-    CDR_Codon <- as.logical(CDR_Codon)
-
-
-# Read input FASTA file
-  tryCatch(
-    inputFASTA <- baseline.read.fasta(inputFilePath, seqtype="DNA",as.string=T,set.attributes=F,forceDNAtolower=F)
-    , error = function(ex){
-      cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
-      q()
-    }
-  )
-  
-  if (length(inputFASTA)==1) {
-    cat("Error|Error reading input. Please enter or upload a valid FASTA file.\n")
-    q()
-  }
-
-  # Process sequence IDs/names
-  names(inputFASTA) <- sapply(names(inputFASTA),function(x){trim(x)})
-  
-  # Convert non nucleotide characters to N
-  inputFASTA[length(inputFASTA)] = gsub("\t","",inputFASTA[length(inputFASTA)])
-  inputFASTA <- lapply(inputFASTA,replaceNonFASTAChars)
-
-  # Process the FASTA file and conver to Matrix[inputSequence, germlineSequence]
-  processedInput <- processInputAdvanced(inputFASTA)
-  matInput <- processedInput[[1]]
-  germlines <- processedInput[[2]]
-  lenGermlines = length(unique(germlines))
-  groups <- processedInput[[3]]
-  lenGroups = length(unique(groups))
-  rm(processedInput)
-  rm(inputFASTA)
-
-#   # remove clones with less than 2 seqeunces
-#   tableGL <- table(germlines)
-#   singletons <- which(tableGL<8)
-#   rowsToRemove <- match(singletons,germlines)
-#   if(any(rowsToRemove)){    
-#     matInput <- matInput[-rowsToRemove,]
-#     germlines <- germlines[-rowsToRemove]    
-#     groups <- groups[-rowsToRemove]
-#   }
-# 
-#   # remove unproductive seqs
-#   nonFuctionalSeqs <- sapply(rownames(matInput),function(x){any(grep("unproductive",x))})
-#   if(any(nonFuctionalSeqs)){
-#     if(sum(nonFuctionalSeqs)==length(germlines)){
-#       write.table("Unproductive",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#       q()      
-#     }
-#     matInput <- matInput[-which(nonFuctionalSeqs),]
-#     germlines <- germlines[-which(nonFuctionalSeqs)]
-#     germlines[1:length(germlines)] <- 1:length(germlines)
-#     groups <- groups[-which(nonFuctionalSeqs)]
-#   }
-# 
-#   if(class(matInput)=="character"){
-#     write.table("All unproductive seqs",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#     q()    
-#   }
-#   
-#   if(nrow(matInput)<10 | is.null(nrow(matInput))){
-#     write.table(paste(nrow(matInput), "seqs only",sep=""),file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-#     q()
-#   }
-
-# replace leading & trailing "-" with "N:
-  matInput <- t(apply(matInput,1,replaceLeadingTrailingDashes,readEnd))
-    
-  # Trim (nucleotide) input sequences to the last codon
-  #matInput[,1] <- apply(matrix(matInput[,1]),1,trimToLastCodon) 
-
-#   # Check for Indels
-#   if(fixIndels){
-#     delPos <- fixDeletions(matInput)
-#     insPos <- fixInsertions(matInput)
-#   }else{
-#     # Check for indels
-#     indelPos <- checkForInDels(matInput)
-#     indelPos <- apply(cbind(indelPos[[1]],indelPos[[2]]),1,function(x){(x[1]==T & x[2]==T)})
-#   }
-  
-  # If indels are present, remove mutations in the seqeunce & throw warning at end
-  #matInput[indelPos,] <- apply(matrix(matInput[indelPos,],nrow=sum(indelPos),ncol=2),1,function(x){x[1]=x[2]; return(x) })
-  
-  colnames(matInput)=c("Input","Germline")
-
-  # If seqeunces are clonal, create effective sequence for each clone & modify germline/group definitions
-  germlinesOriginal = NULL
-  if(clonal){
-    germlinesOriginal <- germlines
-    collapseCloneResults <- tapply(1:nrow(matInput),germlines,function(i){
-                                                                collapseClone(matInput[i,1],matInput[i[1],2],readEnd,nonTerminalOnly=(clonal-1))
-                                                              })
-    matInput = t(sapply(collapseCloneResults,function(x){return(x[[1]])}))
-    names_groups = tapply(groups,germlines,function(x){names(x[1])})  
-    groups = tapply(groups,germlines,function(x){array(x[1],dimnames=names(x[1]))})  
-    names(groups) = names_groups
-  
-    names_germlines =  tapply(germlines,germlines,function(x){names(x[1])})  
-    germlines = tapply(   germlines,germlines,function(x){array(x[1],dimnames=names(x[1]))}   )
-    names(germlines) = names_germlines
-    matInputErrors = sapply(collapseCloneResults,function(x){return(x[[2]])})  
-  }
-
-
-# Selection Analysis
-
-  
-#  if (length(germlines)>sequenceLimit) {
-#    # Code to parallelize processing goes here
-#    stop( paste("Error: Cannot process more than ", Upper_limit," sequences",sep="") )
-#  }
-
-#  if (length(germlines)<sequenceLimit) {}
-  
-    # Compute expected mutation frequencies
-    matExpected <- getExpectedIndividual(matInput)
-    
-    # Count observed number of mutations in the different regions
-    mutations <- lapply( 1:nrow(matInput),  function(i){
-                                              #cat(i,"\n")
-                                              seqI = s2c(matInput[i,1])
-                                              seqG = s2c(matInput[i,2])
-                                              matIGL = matrix(c(seqI,seqG),ncol=length(seqI),nrow=2,byrow=T)    
-                                              retVal <- NA
-                                              tryCatch(
-                                                retVal <- analyzeMutations2NucUri(matIGL)
-                                                , error = function(ex){
-                                                  retVal <- NA
-                                                }
-                                              )                                              
-                                              
-                                              
-                                              return( retVal )
-                                            })
-
-    matObserved <- t(sapply( mutations, processNucMutations2 ))
-    numberOfSeqsWithMutations <- numberOfSeqsWithMutations(matObserved, testID)
-
-    #if(sum(numberOfSeqsWithMutations)==0){
-    #  write.table("No mutated sequences",file=paste(outputPath,outputID,".txt",sep=""),quote=F,sep="\t",row.names=F,col.names=T)
-    #  q()      
-    #}
-    
-    matMutationInfo <- cbind(matObserved,matExpected)
-    rm(matObserved,matExpected)
-    
-     
-    #Bayesian  PDFs
-    bayes_pdf = computeBayesianScore(matMutationInfo, test=testName, max_sigma=20,length_sigma=4001)
-    bayesPDF_cdr = bayes_pdf[[1]]
-    bayesPDF_fwr = bayes_pdf[[2]]    
-    rm(bayes_pdf)
-
-    bayesPDF_germlines_cdr = tapply(bayesPDF_cdr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
-    bayesPDF_germlines_fwr = tapply(bayesPDF_fwr,germlines,function(x) groupPosteriors(x,length_sigma=4001))
-    
-    bayesPDF_groups_cdr = tapply(bayesPDF_cdr,groups,function(x) groupPosteriors(x,length_sigma=4001))
-    bayesPDF_groups_fwr = tapply(bayesPDF_fwr,groups,function(x) groupPosteriors(x,length_sigma=4001))
-    
-    if(lenGroups>1){
-      groups <- c(groups,lenGroups+1)
-      names(groups)[length(groups)] = "All sequences combined"
-      bayesPDF_groups_cdr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_cdr,length_sigma=4001)
-      bayesPDF_groups_fwr[[lenGroups+1]] =   groupPosteriors(bayesPDF_groups_fwr,length_sigma=4001)
-    }
-    
-    #Bayesian  Outputs
-    bayes_cdr =  t(sapply(bayesPDF_cdr,calcBayesOutputInfo))
-    bayes_fwr =  t(sapply(bayesPDF_fwr,calcBayesOutputInfo))
-    bayes_germlines_cdr =  t(sapply(bayesPDF_germlines_cdr,calcBayesOutputInfo))
-    bayes_germlines_fwr =  t(sapply(bayesPDF_germlines_fwr,calcBayesOutputInfo))
-    bayes_groups_cdr =  t(sapply(bayesPDF_groups_cdr,calcBayesOutputInfo))
-    bayes_groups_fwr =  t(sapply(bayesPDF_groups_fwr,calcBayesOutputInfo))
-    
-    #P-values
-    simgaP_cdr = sapply(bayesPDF_cdr,computeSigmaP)
-    simgaP_fwr = sapply(bayesPDF_fwr,computeSigmaP)
-    
-    simgaP_germlines_cdr = sapply(bayesPDF_germlines_cdr,computeSigmaP)
-    simgaP_germlines_fwr = sapply(bayesPDF_germlines_fwr,computeSigmaP)
-    
-    simgaP_groups_cdr = sapply(bayesPDF_groups_cdr,computeSigmaP)
-    simgaP_groups_fwr = sapply(bayesPDF_groups_fwr,computeSigmaP)
-    
-    
-    #Format output
-    
-    # Round expected mutation frequencies to 3 decimal places
-    matMutationInfo[germlinesOriginal[indelPos],] = NA
-    if(nrow(matMutationInfo)==1){
-      matMutationInfo[5:8] = round(matMutationInfo[,5:8]/sum(matMutationInfo[,5:8],na.rm=T),3)
-    }else{
-      matMutationInfo[,5:8] = t(round(apply(matMutationInfo[,5:8],1,function(x){ return(x/sum(x,na.rm=T)) }),3))
-    }
-    
-    listPDFs = list()
-    nRows = length(unique(groups)) + length(unique(germlines)) + length(groups)
-    
-    matOutput = matrix(NA,ncol=18,nrow=nRows)
-    rowNumb = 1
-    for(G in unique(groups)){
-      #print(G)
-      matOutput[rowNumb,c(1,2,11:18)] = c("Group",names(groups)[groups==G][1],bayes_groups_cdr[G,],bayes_groups_fwr[G,],simgaP_groups_cdr[G],simgaP_groups_fwr[G])
-      listPDFs[[rowNumb]] = list("CDR"=bayesPDF_groups_cdr[[G]],"FWR"=bayesPDF_groups_fwr[[G]])
-      names(listPDFs)[rowNumb] = names(groups[groups==paste(G)])[1]
-      #if(names(groups)[which(groups==G)[1]]!="All sequences combined"){
-      gs = unique(germlines[groups==G])
-      rowNumb = rowNumb+1
-      if( !is.na(gs) ){
-        for( g in gs ){
-          matOutput[rowNumb,c(1,2,11:18)] = c("Germline",names(germlines)[germlines==g][1],bayes_germlines_cdr[g,],bayes_germlines_fwr[g,],simgaP_germlines_cdr[g],simgaP_germlines_fwr[g])
-          listPDFs[[rowNumb]] = list("CDR"=bayesPDF_germlines_cdr[[g]],"FWR"=bayesPDF_germlines_fwr[[g]])
-          names(listPDFs)[rowNumb] = names(germlines[germlines==paste(g)])[1]
-          rowNumb = rowNumb+1
-          indexesOfInterest = which(germlines==g)
-          numbSeqsOfInterest =  length(indexesOfInterest)
-          rowNumb = seq(rowNumb,rowNumb+(numbSeqsOfInterest-1))
-          matOutput[rowNumb,] = matrix(   c(  rep("Sequence",numbSeqsOfInterest),
-                                              rownames(matInput)[indexesOfInterest],
-                                              c(matMutationInfo[indexesOfInterest,1:4]),
-                                              c(matMutationInfo[indexesOfInterest,5:8]),
-                                              c(bayes_cdr[indexesOfInterest,]),
-                                              c(bayes_fwr[indexesOfInterest,]),
-                                              c(simgaP_cdr[indexesOfInterest]),
-                                              c(simgaP_fwr[indexesOfInterest])                                              
-          ), ncol=18, nrow=numbSeqsOfInterest,byrow=F)
-          increment=0
-          for( ioi in indexesOfInterest){
-            listPDFs[[min(rowNumb)+increment]] =  list("CDR"=bayesPDF_cdr[[ioi]] , "FWR"=bayesPDF_fwr[[ioi]])
-            names(listPDFs)[min(rowNumb)+increment] = rownames(matInput)[ioi]
-            increment = increment + 1
-          }
-          rowNumb=max(rowNumb)+1
-
-        }
-      }
-    }
-    colsToFormat = 11:18
-    matOutput[,colsToFormat] = formatC(  matrix(as.numeric(matOutput[,colsToFormat]), nrow=nrow(matOutput), ncol=length(colsToFormat)) ,  digits=3)
-    matOutput[matOutput== " NaN"] = NA
-    
-    
-    
-    colnames(matOutput) = c("Type", "ID", "Observed_CDR_R", "Observed_CDR_S", "Observed_FWR_R", "Observed_FWR_S",
-                            "Expected_CDR_R", "Expected_CDR_S", "Expected_FWR_R", "Expected_FWR_S",
-                            paste( rep(testName,6), rep(c("Sigma","CIlower","CIupper"),2),rep(c("CDR","FWR"),each=3), sep="_"),
-                            paste( rep(testName,2), rep("P",2),c("CDR","FWR"), sep="_")
-    )
-    fileName = paste(outputPath,outputID,".txt",sep="")
-    write.table(matOutput,file=fileName,quote=F,sep="\t",row.names=T,col.names=NA)
-    fileName = paste(outputPath,outputID,".RData",sep="")
-    save(listPDFs,file=fileName)
-
-indelWarning = FALSE
-if(sum(indelPos)>0){
-  indelWarning = "<P>Warning: The following sequences have either gaps and/or deletions, and have been ommited from the analysis.";
-  indelWarning = paste( indelWarning , "<UL>", sep="" )
-  for(indels in names(indelPos)[indelPos]){
-    indelWarning = paste( indelWarning , "<LI>", indels, "</LI>", sep="" )
-  }
-  indelWarning = paste( indelWarning , "</UL></P>", sep="" )
-}
-
-cloneWarning = FALSE
-if(clonal==1){
-  if(sum(matInputErrors)>0){
-    cloneWarning = "<P>Warning: The following clones have sequences of unequal length.";
-    cloneWarning = paste( cloneWarning , "<UL>", sep="" )
-    for(clone in names(matInputErrors)[matInputErrors]){
-      cloneWarning = paste( cloneWarning , "<LI>", names(germlines)[as.numeric(clone)], "</LI>", sep="" )
-    }
-    cloneWarning = paste( cloneWarning , "</UL></P>", sep="" )
-  }
-}
-cat(paste("Success",outputID,indelWarning,cloneWarning,sep="|"))
Binary file tmp/baseline/FiveS_Mutability.RData has changed
Binary file tmp/baseline/FiveS_Substitution.RData has changed
--- a/tmp/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,703 +0,0 @@
->IGHV1-18*01
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-18*02
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctaagatctgacgacacggcc
->IGHV1-18*03
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctatggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1-18*04
-caggttcagctggtgcagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctacggtatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttac......aatggtaacacaaactatgcacagaagctccag...ggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccagtaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
->IGHV1-2*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcttggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcnacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*04
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggctgggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggccgtgtattactgtgcgagaga
->IGHV1-2*05
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accggctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagggtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcaggctgagatctgacgacacggtcgtgtattactgtgcgagaga
->IGHV1-24*01
-caggtccagctggtacagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggtttccggatacaccctc............actgaattatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaa......gatggtgaaacaatctacgcacagaagttccag...ggcagagtcaccatgaccgaggacacatctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
->IGHV1-3*01
-caggtccagcttgtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaagacacggctgtgtattactgtgcgagaga
->IGHV1-3*02
-caggttcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgcattgggtgcgccaggcccccggacaaaggcttgagtggatgggatggagcaacgctggc......aatggtaacacaaaatattcacaggagttccag...ggcagagtcaccattaccagggacacatccgcgagcacagcctacatggagctgagcagcctgagatctgaggacatggctgtgtattactgtgcgagaga
->IGHV1-38-4*01
-caggtccagctggtgcagtcttgggct...gaggtgaggaagtctggggcctcagtgaaagtctcctgtagtttttctgggtttaccatc............accagctacggtatacattgggtgcaacagtcccctggacaagggcttgagtggatgggatggatcaaccctggc......aatggtagcccaagctatgccaagaagtttcag...ggcagattcaccatgaccagggacatgtccacaaccacagcctacacagacctgagcagcctgacatctgaggacatggctgtgtattactatgcaagaca
->IGHV1-45*01
-cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattactagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagana
->IGHV1-45*02
-cagatgcagctggtgcagtctggggct...gaggtgaagaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccggacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaagata
->IGHV1-45*03
-.....................................agaagactgggtcctcagtgaaggtttcctgcaaggcttccggatacaccttc............acctaccgctacctgcactgggtgcgacaggcccccagacaagcgcttgagtggatgggatggatcacacctttc......aatggtaacaccaactacgcacagaaattccag...gacagagtcaccattaccagggacaggtctatgagcacagcctacatggagctgagcagcctgagatctgaggacacagccatgtattactgtgcaaga
->IGHV1-46*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-46*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............aacagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-46*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtttcctgcaaggcatctggatacaccttc............accagctactatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagt......ggtggtagcacaagctacgcacagaagttccag...ggcagagtcaccatgaccagggacacgtccacgagcacagtctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgctagaga
->IGHV1-58*01
-caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctgtgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
->IGHV1-58*02
-caaatgcagctggtgcagtctgggcct...gaggtgaagaagcctgggacctcagtgaaggtctcctgcaaggcttctggattcaccttt............actagctctgctatgcagtgggtgcgacaggctcgtggacaacgccttgagtggataggatggatcgtcgttggc......agtggtaacacaaactacgcacagaagttccag...gaaagagtcaccattaccagggacatgtccacaagcacagcctacatggagctgagcagcctgagatccgaggacacggccgtgtattactgtgcggcaga
->IGHV1-68*01
-caggtgcagctggggcagtctgaggct...gaggtaaagaagcctggggcctcagtgaaggtctcctgcaaggcttccggatacaccttc............acttgctgctccttgcactggttgcaacaggcccctggacaagggcttgaaaggatgagatggatcacactttac......aatggtaacaccaactatgcaaagaagttccag...ggcagagtcaccattaccagggacatgtccctgaggacagcctacatagagctgagcagcctgagatctgaggactcggctgtgtattactgggcaagata
->IGHV1-69*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*02
-caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1-69*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgatgacacggc
->IGHV1-69*04
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*05
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccacggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1-69*06
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*07
-.....................................agaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgag
->IGHV1-69*08
-caggtccagctggtgcaatctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatactatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*09
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*10
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......cttggtatagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*11
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggaaggatcatccctatc......cttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*12
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*13
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcagtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69*14
-caggtccagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-69-2*01
-gaggtccagctggtacagtctggggct...gaggtgaagaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatacgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcaacaga
->IGHV1-69-2*02
-.....................................agaagcctggggctacagtgaaaatctcctgcaaggtttctggatacaccttc............accgactactacatgcactgggtgcaacaggcccctggaaaagggcttgagtggatgggacttgttgatcctgaa......gatggtgaaacaatatatgcagagaagttccag...ggcagagtcaccataaccgcggacacgtctacagacacagcctacatggagctgagcagcctgagatctgag
->IGHV1-69D*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctgggtcctcggtgaaggtctcctgcaaggcttctggaggcaccttc............agcagctatgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatc......tttggtacagcaaactacgcacagaagttccag...ggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1-8*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagttatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
->IGHV1-8*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctatgatatcaactgggtgcgacaggccactggacaagggcttgagtggatgggatggatgaaccctaac......agtggtaacacaggctatgcacagaagttccag...ggcagagtcaccatgaccaggaacacctccataagcacagcctacatggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagagg
->IGHV1-NL1*01
-caggttcagctgttgcagcctggggtc...caggtgaagaagcctgggtcctcagtgaaggtctcctgctaggcttccagatacaccttc............accaaatactttacacggtgggtgtgacaaagccctggacaagggcatnagtggatgggatgaatcaacccttac......aacgataacacacactacgcacagacgttctgg...ggcagagtcaccattaccagtgacaggtccatgagcacagcctacatggagctgagcngcctgagatccgaagacatggtcgtgtattactgtgtgagaga
->IGHV1/OR15-1*01
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgaga
->IGHV1/OR15-1*02
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctgcacggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
->IGHV1/OR15-1*03
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacacggagctgagcagcctgagatctgaggacacagccacgtattactgtgcgagaga
->IGHV1/OR15-1*04
-caggtgcagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacatcttc............accgactactatatgcactgggtgcgacaggcccctggacaagagcttgggtggatgggacggatcaaccctaac......agtggtggcacaaactatgcacagaagtttcag...ggcagagtcaccatgaccagggacacgtccatcagcacagcctacatggagctgagcagcctgagatctgaggacacggccacgtattactgtgcgagaga
->IGHV1/OR15-2*01
-caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcaggctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1/OR15-2*02
-caggtgcagctggtgcagtctggagct...gaggtgaagaagcctggagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1/OR15-2*03
-caggtgcagctggtgcagtctggagct...gaggtgaagaagcctagagcctcagtgaaggtctcctgcaaggcttctggttacaccttt............accagctactatatgcactgggtgtgacaggcccctgaacaagggcttgagtggatgggatggatcaacacttac......aatggtaacacaaactacccacagaagctccag...ggcagagtcaccatgaccagagacacatccacgagcacagcctacatggagctgagcagcctgagatctgacgacatggccgtgtattactgtgcgagaga
->IGHV1/OR15-3*01
-caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatcttcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1/OR15-3*02
-caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accgactactttatgaactggatgcgccaggcccctggacaaaggcttgagtggatgggatggatcaacgctggc......aatggtaacacaaaatattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgagaga
->IGHV1/OR15-3*03
-caggtccaactggtgtagtctggagct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactatatgaactggatgcgccaggcccctggacaaggcttcgagtggatgggatggatcaacgctggc......aatggtaacacaaagtattcacagaagctccag...ggcagagtcaccattaccagggacacatctgcgagcacagcctacatgcagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1/OR15-4*01
-caggaccagttggtgcagtctggggct...gaggtgaagaagcctctgtcctcagtgaaggtctccttcaaggcttctggatacaccttc............accaacaactttatgcactgggtgtgacaggcccctggacaaggacttgagtggatgggatggatcaatgctggc......aatggtaacacaacatatgcacagaagttccag...ggcagagtcaccataaccagggacacgtccatgagcacagcctacacggagctgagcagcctgagatctgaggacacggccgtgtattactgtgcgaga
->IGHV1/OR15-5*01
-.....................................agaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
->IGHV1/OR15-5*02
-caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccttc............accaactactgtatgcactgggtgcgccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacaaaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgaga
->IGHV1/OR15-9*01
-caggtacagctgatgcagtctggggct...gaggtgaagaagcctggggcctcagtgaggatctcctgcaaggcttctggatacaccttc............accagctactgtatgcactgggtgtgccaggcccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...ggcagagtcaccataaccagggacacatccatgggcacagcctacatggagctaagcagcctgagatctgaggacacggccatgtattactgtgtgagaga
->IGHV1/OR21-1*01
-caggtacagctggtgcagtctggggct...gaggtgaagaagcctggggcctcagtgaaggtctcctgcaaggcttctggatacaccatc............accagctactgtatgcactgggtgcaccaggtccatgcacaagggcttgagtggatgggattggtgtgccctagt......gatggcagcacaagctatgcacagaagttccag...gccagagtcaccataaccagggacacatccatgagcacagcctacatggagctaagcagtctgagatctgaggacacggccatgtattactgtgtgagaga
->IGHV2-10*01
-caggtcaccttgaaggagtctggtcct...gcactggtgaaacccacacagaccctcatgctgacctgcaccttctctgggttctcactcagc......acttctggaatgggtgtgggttagatctgtcagccctcagcaaaggccctggagtggcttgcacacatttattagaat.........gataataaatactacagcccatctctgaag...agtaggctcattatctccaaggacacctccaagaatgaagtggttctaacagtgatcaacatggacattgtggacacagccacacattactgtgcaaggagac
->IGHV2-26*01
-caggtcaccttgaaggagtctggtcct...gtgctggtgaaacccacagagaccctcacgctgacctgcaccgtctctgggttctcactcagc......aatgctagaatgggtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacacattttttcgaat.........gacgaaaaatcctacagcacatctctgaag...agcaggctcaccatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacatattactgtgcacggatac
->IGHV2-5*01
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*02
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*03
-................................gctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccattaccaaggacacctccaaaaaccaggt
->IGHV2-5*04|
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattggaat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtac
->IGHV2-5*05
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*06
-cagatcaccttgaaggagtctggtcct...acgctggtaaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacaga
->IGHV2-5*08
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacagcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-5*09
-caggtcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggagtgggtgtgggctggatccgtcagcccccaggaaaggccctggagtggcttgcactcatttattgggat.........gatgataagcgctacggcccatctctgaag...agcaggctcaccatcaccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-70*01
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70*02
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*03
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*04
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattac
->IGHV2-70*05
-..........................t...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgcgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatgga
->IGHV2-70*06
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatccctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*07
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccggggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*08
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcgccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacggccgtgtattactg
->IGHV2-70*09
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacccgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaac...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacaggcacatattactgtgtacgg
->IGHV2-70*10
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggattgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70*11
-cgggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70*12
-cagatcaccttgaaggagtctggtcct...acgctggtgaaacccacacagaccctcacgctgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacatattactgtgcacacagac
->IGHV2-70*13
-caggtcaccttgagggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgtgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcactcattgattgggat.........gatgataaatactacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattattgtgcacggatac
->IGHV2-70D*04
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccagggaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2-70D*14
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacacagaccctcacactgacctgcaccttctctgggttctcactcagc......actagtggaatgcgtgtgagctggatccgtcagcccccaggtaaggccctggagtggcttgcacgcattgattgggat.........gatgataaattctacagcacatctctgaag...accaggctcaccatctccaaggacacctccaaaaaccaggtggtccttacaatgaccaacatggaccctgtggacacagccacgtattactgtgcacggatac
->IGHV2/OR16-5*01
-caggtcaccttgaaggagtctggtcct...gcgctggtgaaacccacagagaccctcacgctgacctgcactctctctgggttctcactcagc......acttctggaatgggtatgagctggatccgtcagcccccagggaaggccctggagtggcttgctcacatttttttgaat.........gacaaaaaatcctacagcacgtctctgaag...aacaggctcatcatctccaaggacacctccaaaagccaggtggtccttaccatgaccaacatggaccctgtggacacagccacgtattactgtgcatggagag
->IGHV3-11*01
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-11*03
-caggtgcagctgttggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgaga
->IGHV3-11*04
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-11*05
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-11*06
-caggtgcagctggtggagtctggggga...ggcttggtcaagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctggatccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-13*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-13*02
-gaggtgcatctggtggagtctggggga...ggcttggtacagcctgggggggccctgagactctcctgtgcagcctctggattcaccttc............agtaactacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagccaatggtactgct.........ggtgacacatactatccaggctccgtgaag...gggcgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-13*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctgtggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccaattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaaga
->IGHV3-13*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggaatgggtctcagctattggtactgct.........ggtgacacatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-13*05
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctacgacatgcactgggtccgccaagctacaggaaaaggtctggagtgggtctcagctattggtactgct.........ggtgacccatactatccaggctccgtgaag...ggccgattcaccatctccagagaaaatgccaagaactccttgtatcttcaaatgaacagcctgagagccggggacacggctgtgtattactgtgcaagaga
->IGHV3-15*01
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*02
-gaggtgcagctggtggagtctggggga...gccttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*03
-gaggtgcagctggtggagtctgccgga...gccttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagttgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*04
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattgaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*05
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagtctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*06
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggattcactttc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacaaactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*07
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtcccttagactctcctgtgcagcctctggtttcactttc............agtaacgcctggatgaactgggtccgccaggctccagggaaggggctggagtgggtcggccgtattaaaagcaaaactgatggtgggacaacagactacgctgcacccgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtaccacaga
->IGHV3-15*08
-gaggtgcagctggtggagtctgcggga...ggcttggtacagcctggggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
->IGHV3-16*01
-gaggtacaactggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
->IGHV3-16*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggcccgcaaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgtggactccgtgaag...cgccgattcatcatctccagagacaattccaggaactccctgtatctgcaaaagaacagacggagagccgaggacatggctgtgtattactgtgtgagaaa
->IGHV3-19*01
-acagtgcagctggtggagtctggggga...ggcttggtagagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccgccaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacttcctgtatcagcaaatgaacagcctgaggcccgaggacatggctgtgtattactgtgtgagaaa
->IGHV3-20*01
-gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
->IGHV3-20*02
-gaggtgcagctggtggagtctggggga...ggtgtggtacggcctggggggtccctgagactctcctttgcagcctctggattcaccttt............gatgattatggcatgagctgggtccgccaagctccagggaaggggctggagtgggtctctggtattaattggaat......ggtggtagcacaggttatgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagccgaggacacggccttgtatcactgtgcgagaga
->IGHV3-21*01
-gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-21*02
-gaggtgcaactggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-21*03
-gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacagctgtgtattactgtgcgagaga
->IGHV3-21*04
-gaggtgcagctggtggagtctggggga...ggcctggtcaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt......agtagttacatatactacgcagactcagtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-22*01
-gaggtgcatctggtggagtctggggga...gccttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
->IGHV3-22*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agttactactacatgagcggggtccgccaggctcccgggaaggggctggaatgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaagagcctgaaaaccgaggacacggccgtgtattactgttccagaga
->IGHV3-23*01
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*02
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacggagactccgtgaag...ggccggttcaccatctcaagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*03
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagataattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23*05
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctatttatagcagt......ggtagtagcacatactatgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaa
->IGHV3-23D*01
-gaggtgcagctgttggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-23D*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agcagctatgccatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagctattagtggtagt......ggtggtagcacatactacgcagactccgtgaag...ggccggttcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggccgtatattactgtgcgaaaga
->IGHV3-25*01
-gagatgcagctggtggagtctggggga...ggcttgcaaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
->IGHV3-25*02
-gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggtttgacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
->IGHV3-25*03
-gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattagtgtaccaga
->IGHV3-25*04
-gagacgcagctggtggagtctggggga...ggcttggcaaagcctgggcggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctgtattactgtaccagaga
->IGHV3-25*05
-gagatgcagctggtggagtctggggga...ggcttggcaaagcctgcgtggtccccgagactctcctgtgcagcctctcaattcaccttc............agtagctactacatgaactgtgtccgccaggctccagggaatgggctggagttggttggacaagttaatcctaat......gggggtagcacatacctcatagactccggtaag...gaccgattcaatacctccagagataacgccaagaacacacttcatctgcaaatgaacagcctgaaaaccgaggacacggccctctattagtgtaccagaga
->IGHV3-29*01
-gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
->IGHV3-30*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*02
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30*03
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*04
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*05
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgagggcacggctgtgtattactgtgcgagaga
->IGHV3-30*06
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*07
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*08
-caggtgcagctggtggactctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctgcattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
->IGHV3-30*09
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcgccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*10
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacacagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*11
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*12
-caggtgcagctggtggagtctgggggg...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*13
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacaggctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*14
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*15
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgagcagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*16
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggccccaggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*17
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccgggcaaggggctagagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30*18
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30*19
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30-2*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgaggca
->IGHV3-30-22*01
-gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagagctgaggacatggacgtgtatggctgtacataaggtc
->IGHV3-30-3*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30-3*02
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagcaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30-3*03
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-30-33*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgagg
->IGHV3-30-42*01
-gaggtggagctgatagagcccacagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagcccagttcaccagtctgcaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacagtcagagaactgaggacatggctgtgtatggctgtacataaggtt
->IGHV3-30-5*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30-5*02
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcatttatacggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-30-52*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaaggaactcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcataatctttgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgctaatgaacagtctgagagcagcgggcacagctgtgtgttactgtatgtgagg
->IGHV3-32*01
-gaggtggagctgatagagtccatagag...gacctgagacaacctgggaagttcctgagactctcctgtgtagcctctagattcgccttc............agtagcttctgaatgagccgagttcaccagtctccaggcaaggggctggagtgagtaatagatataaaagatgat......ggaagtcagatacaccatgcagactctgtgaag...ggcagattctccatctccaaagacaatgctaagaactctctgtatctgcaaatgaacactcagagagctgaggacgtggccgtgtatggctatacataaggtc
->AIGHV3-33*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*02
-caggtacagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgcgaag...ggccgattcaccatctccagagacaattccacgaacacgctgtttctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*03
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaactccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-33*04
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctagagtgggtggcagttatatggtatgac......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*05
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatcatatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-33*06
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctgggaggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcagttatatggtatgat......ggaagtaataaatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaaaga
->IGHV3-33-2*01
-gaggtacagctcgtggagtccggagag...gacccaagacaacctgggggatccttgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcggtttcccaggctccagggaaggggctggagtgagtagtagatatacagtgtgat......ggaagtcagatatgttatgcccaatctgtgaag...agcaaattcaccatctccaaagaaaatgccaagaactcactgtatttgcaaatgaacagtctgagagcagagggcacagctgtgtgttactgtatgtgaggca
->IGHV3-35*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctgggggatccctgagactctcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtccatcaggctccaggaaaggggctggagtgggtatcgggtgttagttggaat......ggcagtaggacgcactatgcagactctgtgaag...ggccgattcatcatctccagagacaattccaggaacaccctgtatctgcaaacgaatagcctgagggccgaggacacggctgtgtattactgtgtgagaaa
->IGHV3-38*01|
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgcgtattactgtgccagatata
->IGHV3-38*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaaggggctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
->IGHV3-38*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctagggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctggatccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacaacctgagagctgagggcacggccgtgtattactgtgccagatata
->IGHV3-38-3*01
-gaggtgcagctggtggagtctcgggga...gtcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaatgagatgagctgggtccgccaggctccagggaagggtctggagtgggtctcatccattagtggt............ggtagcacatactacgcagactccaggaag...ggcagattcaccatctccagagacaattccaagaacacgctgcatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtaagaaaga
->IGHV3-43*01
-gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattataccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
->IGHV3-43*02
-gaagtgcagctggtggagtctggggga...ggcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccagggaagggtctggagtgggtctctcttattagtggggat......ggtggtagcacatactatgcagactctgtgaag...ggccgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagaactgaggacaccgccttgtattactgtgcaaaagata
->IGHV3-43D*01
-gaagtgcagctggtggagtctggggga...gtcgtggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccgtcaagctccggggaagggtctggagtgggtctctcttattagttgggat......ggtggtagcacctactatgcagactctgtgaag...ggtcgattcaccatctccagagacaacagcaaaaactccctgtatctgcaaatgaacagtctgagagctgaggacaccgccttgtattactgtgcaaaagata
->IGHV3-47*01
-gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgcgaccctcctgtgcagcctctggattcgccttc............agtagctatgctctgcactgggttcgccgggctccagggaagggtctggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcatatgaacagcctgatagctgaggacatggctgtgtattattgtgcaaga
->IGHV3-47*02
-gaggatcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagaccctcctgtgcagcctctggattcgccttc............agtagctatgttctgcactgggttcgccgggctccagggaagggtccggagtgggtatcagctattggtactggt.........ggtgatacatactatgcagactccgtgatg...ggccgattcaccatctccagagacaacgccaagaagtccttgtatcttcaaatgaacagcctgatagctgaggacatggctgtgtattattgtgcaagaga
->IGHV3-48*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-48*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaatgccaagaactcactgtatctgcaaatgaacagcctgagagacgaggacacggctgtgtattactgtgcgagaga
->IGHV3-48*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagttatgaaatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......ggtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
->IGHV3-48*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatagcatgaactgggtccgccaggctccagggaaggggctggagtgggtttcatacattagtagtagt......agtagtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-49*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacaccgcgtctgtgaaa...ggcagattcaccatctcaagagatggttccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggccgtccctgagactctcctgtacagcttctggattcaccttt............gggtattatcctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*04
-gaggtgcagctggtggagtctggggga...ggcttggtacagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctgggtccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-49*05
-gaggtgcagctggtggagtctggggga...ggcttggtaaagccagggcggtccctgagactctcctgtacagcttctggattcaccttt............ggtgattatgctatgagctggttccgccaggctccagggaaggggctggagtgggtaggtttcattagaagcaaagcttatggtgggacaacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattccaaaagcatcgcctatctgcaaatgaacagcctgaaaaccgaggacacagccgtgtattactgtactagaga
->IGHV3-52*01
-gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgagagg
->IGHV3-52*02
-gaggtgcagctggtggagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggcaggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
->IGHV3-52*03
-gaggtgcagctggtcgagtctgggtga...ggcttggtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctcctggatgcactgggtctgccaggctccggagaaggggctggagtgggtggccgacataaagtgtgac......ggaagtgagaaatactatgtagactctgtgaag...ggccgattgaccatctccagagacaatgccaagaactccctctatctgcaagtgaacagcctgagagctgaggacatgaccgtgtattactgtgtgaga
->IGHV3-53*01
-gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-53*02
-gaggtgcagctggtggagactggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-53*03
-gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccagcctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactctgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgctaggga
->IGHV3-53*04
-gaggtgcagctggtggagtctggagga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagacacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggccgtgtattactgtgcgagaga
->IGHV3-54*01
-gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaagctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
->IGHV3-54*02
-gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtacgat......agaagtcagatatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactccgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagg
->IGHV3-54*04
-gaggtacagctggtggagtctgaagaa...aaccaaagacaacttgggggatccctgagactctcctgtgcagactctggattaaccttc............agtagctactgaatgagctcagattcccaggctccagggaaggggctggagtgagtagtagatatatagtaggat......agaagtcagctatgttatgcacaatctgtgaag...agcagattcaccatctccaaagaaaatgccaagaactcactctgtttgcaaatgaacagtctgagagcagagggcacggccgtgtattactgtatgtgagt
->IGHV3-62*01
-gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctctgctatgcactgggtccgccaggctccaagaaagggtttgtagtgggtctcagttattagtacaagt......ggtgataccgtactctacacagactctgtgaag...ggccgattcaccatctccagagacaatgcccagaattcactgtctctgcaaatgaacagcctgagagccgagggcacagttgtgtactactgtgtgaaaga
->IGHV3-63*01
-gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctccaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataaggtt
->IGHV3-63*02
-gaggtggagctgatagagtccatagag...ggcctgagacaacttgggaagttcctgagactctcctgtgtagcctctggattcaccttc............agtagctactgaatgagctgggtcaatgagactctagggaaggggctggagggagtaatagatgtaaaatatgat......ggaagtcagatataccatgcagactctgtgaag...ggcagattcaccatctccaaagacaatgctaagaactcaccgtatctgcaaacgaacagtctgagagctgaggacatgaccatgcatggctgtacataa
->IGHV3-64*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcaaactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
->IGHV3-64*02
-gaggtgcagctggtggagtctggggaa...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatattatgcagactctgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgggcagcctgagagctgaggacatggctgtgtattactgtgcgagaga
->IGHV3-64*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgtccaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
->IGHV3-64*04
-caggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-64*05
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactcagtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatgttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
->IGHV3-64D*06
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgttcagcctctggattcaccttc............agtagctatgctatgcactgggtccgccaggctccagggaagggactggaatatgtttcagctattagtagtaat......gggggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgagcagtctgagagctgaggacacggctgtgtattactgtgtgaaaga
->IGHV3-66*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-66*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaga
->IGHV3-66*03
-gaggtgcagctggtggagtctggagga...ggcttgatccagcctggggggtccctgagactctcctgtgcagcctctgggttcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagctgt.........ggtagcacatactacgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgagaga
->IGHV3-66*04
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccgtc............agtagcaactacatgagctgggtccgccaggctccagggaaggggctggagtgggtctcagttatttatagcggt.........ggtagcacatactacgcagactccgtgaag...ggcagattcaccatctccagagacaattccaagaacacgctgtatcttcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaca
->IGHV3-69-1*01
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-69-1*02
-gaggtgcagctggtggagtctggggga...ggcttggtaaagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgaactgggtccgccaggctccagggaaggggctggagtgggtctcatccattagtagtagt.........agtaccatatactacgcagactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtttattactgtgcgagaga
->IGHV3-7*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-7*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaagggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgaga
->IGHV3-7*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttt............agtagctattggatgagctgggtccgccaggctccagggaaggggctggagtgggtggccaacataaagcaagat......ggaagtgagaaatactatgtggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-71*01
-gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggccgtgtattactgtgcgagaga
->IGHV3-71*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcgagaga
->IGHV3-71*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctggtttcaccttc............agtgactactacatgagctgggtccgccaggctcccgggaaggggctggagtgggtaggtttcattagaaacaaagctaatggtgggacaacagaatagaccacgtctgtgaaa...ggcagattcacaatctcaagagatgattccaaaagcatcacctatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgcgagaga
->IGHV3-72*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagttacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtgctagaga
->IGHV3-72*02
-....................................................................................accttc............agtgaccactacatggactgggtccgccaggctccagggaaggggctggagtgggttggccgtactagaaacaaagctaacagctacaccacagaatacgccgcgtctgtgaaa...ggcagattcaccatctcaagagatgattcaaagaactcactgtat
->IGHV3-73*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
->IGHV3-73*02
-gaggtgcagctggtggagtccggggga...ggcttggtccagcctggggggtccctgaaactctcctgtgcagcctctgggttcaccttc............agtggctctgctatgcactgggtccgccaggcttccgggaaagggctggagtgggttggccgtattagaagcaaagctaacagttacgcgacagcatatgctgcgtcggtgaaa...ggcaggttcaccatctccagagatgattcaaagaacacggcgtatctgcaaatgaacagcctgaaaaccgaggacacggccgtgtattactgtactagaca
->IGHV3-74*01
-gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
->IGHV3-74*02
-gaggtgcagctggtggagtctggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaaga
->IGHV3-74*03
-gaggtgcagctggtggagtccggggga...ggcttagttcagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaacgtacgcggactccgtgaag...ggccgattcaccatctccagagacaacgccaagaacacgctgtatctgcaaatgaacagtctgagagccgaggacacggctgtgtattactgtgcaagaga
->IGHV3-9*01
-gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
->IGHV3-9*02
-gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcacctct............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacacggccttgtattactgtgcaaaagata
->IGHV3-9*03
-gaagtgcagctggtggagtctggggga...ggcttggtacagcctggcaggtccctgagactctcctgtgcagcctctggattcaccttt............gatgattatgccatgcactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaat......agtggtagcataggctatgcggactctgtgaag...ggccgattcaccatctccagagacaacgccaagaactccctgtatctgcaaatgaacagtctgagagctgaggacatggccttgtattactgtgcaaaagata
->IGHV3-NL1*01
-caggtgcagctggtggagtctggggga...ggcgtggtccagcctggggggtccctgagactctcctgtgcagcgtctggattcaccttc............agtagctatggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtctcagttatttatagcggt......ggtagtagcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaattccaagaacacgctgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgcgaaaga
->IGHV3/OR15-7*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgatgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctaga
->IGHV3/OR15-7*02
-gaggtgcagctgttggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgctgcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
->IGHV3/OR15-7*03
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcagcctgaaaaccgaggacttggccgtgtattactgtgctaga
->IGHV3/OR15-7*05
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctgggggttctctgagactctcatgtgcagcctctggattcaccttc............agtgaccactacatgagctgggtccgccaggctcaagggaaagggctagagttggtaggtttaataagaaacaaagctaacagttacacgacagaatatgctgcgtctgtgaaa...ggcagacttaccatctcaagagaggattcaaagaacacgctgtatctgcaaatgagcaacctgaaaaccgaggacttggccgtgtattactgtgctagaga
->IGHV3/OR16-10*01
-gaggttcagctggtgcagtctggggga...ggcttggtacatcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
->IGHV3/OR16-10*02
-gaggttcagctggtgcagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaaga
->IGHV3/OR16-10*03
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactctcctgtgcaggctctggattcaccttc............agtagctatgctatgcactgggttcgccaggctccaggaaaaggtctggagtgggtatcagctattggtactggt.........ggtggcacatactatgcagactccgtgaag...ggccgattcaccatctccagagacaatgccaagaactccttgtatcttcaaatgaacagcctgagagccgaggacatggctgtgtattactgtgcaagaga
->IGHV3/OR16-12*01
-gaggtgcagctggtagagtctgggaga...ggcttggcccagcctggggggtacctaaaactctccggtgcagcctctggattcaccgtc............ggtagctggtacatgagctggatccaccaggctccagggaagggtctggagtgggtctcatacattagtagtagt......ggttgtagcacaaactacgcagactctgtgaag...ggcagattcaccatctccacagacaactcaaagaacacgctctacctgcaaatgaacagcctgagagtggaggacacggccgtgtattactgtgcaaga
->IGHV3/OR16-13*01
-gaggtgcagctggtggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaagctccagggaaggggctggtgtgggtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccatgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
->IGHV3/OR16-14*01
-gaggtgcagctggaggagtctggggga...ggcttagtacagcctggagggtccctgagactctcctgtgcagcctctggattcaccttc............agtagctactggatgcactgggtccgccaatctccagggaaggggctggtgtgagtctcacgtattaatagtgat......gggagtagcacaagctacgcagactccttgaag...ggccaattcaccatctccagagacaatgctaagaacacgctgtatctgcaaatgaacagtctgagagctgaggacatggctgtgtattactgtactaga
->IGHV3/OR16-15*01
-gaagtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagactctcctgtgcagcctctgtattcaccttc............agtaacagtgacataaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaattttccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgagaaa
->IGHV3/OR16-15*02
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcgggtattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaagacatggccgtgtattactgtgtgaga
->IGHV3/OR16-16*01
-gaggtgcagctggtggagtctggggga...ggcttggtccagcctggggggtccctgagacactcctgtgcagcctctggattcaccttc............agtaacagtgacatgaactgggtcctctaggctccaggaaaggggctggagtgggtctcggatattagttggaat......ggcggtaagacgcactatgtggactccgtgaag...ggccaatttaccatctccagagacaattccagcaagtccctgtatctgcaaaagaacagacagagagccaaggacatggccgtgtattactgtgtgaga
->IGHV3/OR16-6*02
-gaggtgcagctggtggagtctgcggga...ggccttggtacagcctgggggtcccttagactctcctgtgcagcctctggattcacttgc............agtaacgcctggatgagctgggtccgccaggctccagggaaggggctggagtgggttggctgtattaaaagcaaagctaatggtgggacaacagactacgctgcacctgtgaaa...ggcagattcaccatctcaagagatgattcaaaaaacacgctgtatctgcaaatgatcagcctgaaaaccgaggacacggccgtgtattactgtaccacagg
->IGHV3/OR16-8*01
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagcctctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtgggtttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcctgagagctgaggacacggctgtgtattactgtgtgaaa
->IGHV3/OR16-8*02
-gaggtgcagctggtggagtctggggga...ggcttggtacagcctggggggtccctgagactgtcctgtccagactctggattcaccttc............agtaaccactacatgagctgggtccgccaggctccagggaagggactggagtggatttcatacattagtggtgat......agtggttacacaaactacgcagactctgtgaag...ggccgattcaccatctccagggacaacgccaataactcaccgtatctgcaaatgaacagcttgagagctgaggacacggctgtgtattactgtgtgaaaca
->IGHV3/OR16-9*01
-gaggtgcagctggtggagtctggagga...ggcttggtacagcctggggggtccctgagactctcctgtgcagcctctggattcaccttc............agtaaccactacacgagctgggtccgccaggctccagggaagggactggagtgggtttcatacagtagtggtaat......agtggttacacaaactacgcagactctgtgaaa...ggccgattcaccatctccagggacaacgccaagaactcactgtatctgcaaatgaacagcctgagagccgaggacacggctgtgtattactgtgtgaaa
->IGHV4-28*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaga
->IGHV4-28*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacaccggcgtgtattactgtgcgaga
->IGHV4-28*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcatctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*06
-caggtgcagctacaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccttggacacggccgtgtattactgtgcgagaaa
->IGHV4-28*07
-caggtacagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtagtaactggtggggctggatccggcagcccccagggaagggactggagtggattgggtacatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-30-2*01
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-30-2*02
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
->IGHV4-30-2*03
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcagacacggctgtgtattactgtgcgagaca
->IGHV4-30-2*04
-...........................................................................tctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-30-2*05
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-2*06
-cagctgcagctgcaggagtccggctca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagtcaccagggaagggcctggagtggattgggtacatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaggtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-30-4*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgcagcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->XIGHV4-30-4*04
-caggtgcagctgcaggactcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcccccagggaagggcctggagtggattgggtacttctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactg
->IGHV4-30-4*05
-..........................................................................ctctggtggctccatcagc......agtggtgattactactggagttggatccgccagcncccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*06
-...........................................................................tctggtggctccatcagc......agtggtgattactactggagttggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcagacacggccgtgtattactgtgccagaga
->IGHV4-30-4*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctctggtggctccatcagc......agtggtggttactcctggagctggatccggcagccaccagggaagggactggagtggattgggtatatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-31*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtctagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-31*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgtactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-31*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-31*04
-caggtgcggctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
->IGHV4-31*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgacc...gcggacgcggccgtgtattactgtgcg
->IGHV4-31*06
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->IGHV4-31*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggatccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->IGHV4-31*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactg
->IGHV4-31*09
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-31*10
-caggtgcagctgcaggagtcgggccca...ggactgttgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtggttactactggagctggatccgccagcacccagggaagggcctggagtggattgggtgcatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacccgtccaagaaccagttctccctgaagccgagctctgtgactgccgcggacacggccgtggattactgtgcgagaga
->IGHV4-34*01
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*02
-caggtgcagctacaacagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*03
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-34*04
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*05
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggtgctggatccgccagcccctagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaacaacaacccgtccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-34*06
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgggctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-34*07
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaaccatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-34*08
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggaccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcg
->IGHV4-34*09
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-34*10
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaagggactggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-34*11
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccgtc............agtggttactactggagctggatccggcagcccccagggaaggggctggagtggattgggtatatctattatagt.........gggagcaccaacaacaacccctccctcaag...agtcgagccaccatatcagtagacacgtccaagaaccagttctccctgaacctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
->IGHV4-34*12
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcattcatagt.........ggaagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgaga
->IGHV4-34*13
-...........................................................................tatggtgggtccttc............agtggttactactggagctggatccgccagcccccagggaaggggctggagtggattggggaaatcaatcatagt.........ggaagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggctgtgtattactgtgcgagagg
->IGHV4-38-2*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgctgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgaga
->IGHV4-38-2*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggttactccatcagc.........agtggttactactggggctggatccggcagcccccagggaaggggctggagtggattgggagtatctatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-39*01
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaca
->IGHV4-39*02
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcgagaga
->IGHV4-39*03
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
->IGHV4-39*04
-..................................................................................gctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacac
->IGHV4-39*05
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccccgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
->IGHV4-39*06
-cggctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttccccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-39*07
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccgccagcccccagggaaggggctggagtggattgggagtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattgctgtgcgagaga
->IGHV4-4*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-4*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctatctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-4*05
-caggtgcagctgcaggagttgggccca...ggactggtgaagcctccggggaccctgtccctcacctgcgctgtctctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-4*06
-............................................................
-...............tctggtggctccatcagc.........agtagtaactggtggagttgggtccgccagcccccagggannnggctggagtggattggggaaatctatcatagt.........gggagcaccaactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-4*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-55*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-55*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-55*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-55*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-55*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagctttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactg
->IGHV4-55*06
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaagcagttctacctgaagctgagctctgtgaccgctgcggacacggccgtgtattactg
->IGHV4-55*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaggaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactg
->IGHV4-55*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtcagtagacacgtccaagaaccagttctacctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4-55*09
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcatctgcgctgtctctggtgactccatcagc.........agtggtaactggtgaatctgggtccgccagcccccagggaaggggctggagtggattggggaaatccatcatagt.........gggagcacctactacaacccgtccctcaag...agtcgaatcaccatgtccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgtggacacggccgtgtattactgtgcgagaaa
->IGHV4-59*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-59*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-59*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccaattctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcg
->IGHV4-59*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
->IGHV4-59*05
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagccgccggggaagggactggagtggattgggcgtatctattatagt.........gggagcacctactacaacccgtccctcaag...agtcgagtcaccatatccgtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggctgtgtattactgtgcg
->IGHV4-59*06
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtcactggtggctccatc............agtagttactactggagctggatccggcagcccgctgggaagggcctggagtggattgggtacatctattacagt.........gggagcacctactacaacccgtccctcaag...agtcgagttaccatatcagtagacacgtctaagaaccagttctccctgaagctgagctctgtgactgccgcggacacggccgtgtattactgtgcg
->IGHV4-59*07
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggacaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgaga
->IGHV4-59*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatc............agtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaca
->IGHV4-59*09
-...........................................................................tctggtggctccatc............agtagttactactggagctggatccggcagcccccaggnannngactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagagg
->IGHV4-59*10
-caggtgcagctacagcagtggggcgca...ggactgttgaagccttcggagaccctgtccctcacctgcgctgtctatggtggctccatc............agtagttactactggagctggatccggcagcccgccgggaaggggctggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatgtcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagata
->IGHV4-61*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-61*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcacagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtggtagttactactggagctggatccggcagcccgccgggaagggactggagtggattgggcgtatctataccagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcagacacggccgtgtattactgtgcgagaga
->IGHV4-61*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccacttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4-61*04
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattggatatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgct...gacacggccgtgtattactg
->IGHV4-61*05
-cagctgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccatcagc......agtagtagttactactggggctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgaga
->IGHV4-61*06
-...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgccagaga
->IGHV4-61*07
-...........................................................................tctggtggctccgtcagc......agtggtagttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaca
->IGHV4-61*08
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcactgtctctggtggctccgtcagc......agtggtggttactactggagctggatccggcagcccccagggaagggactggagtggattgggtatatctattacagt.........gggagcaccaactacaacccctccctcaag...agtcgagtcaccatatcagtagacacgtccaagaaccagttctccctgaagctgagctctgtgaccgctgcggacacggccgtgtattactgtgcgagaga
->IGHV4/OR15-8*01
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccgtccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4/OR15-8*02
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggaaccccaactacaacccgtccctcaag...agtcgagtcaccatatcaatagacaagtccaagaaccaattctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV4/OR15-8*03
-caggtgcagctgcaggagtcgggccca...ggactggtgaagccttcggagaccctgtccctcacctgcgttgtctctggtggctccatcagc.........agtagtaactggtggagctgggtccgccagcccccagggaaggggctggagtggattggggaaatctatcatagt.........gggagccccaactacaacccatccctcaag...agtcgagtcaccatatcagtagacaagtccaagaaccagttctccctgaagctgagctctgtgaccgccgcggacacggccgtgtattactgtgcgagaga
->IGHV5-10-1*01
-gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-10-1*02
-gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcttggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggc.tcggacaccgccatgtattactgtgcgagaca
->IGHV5-10-1*03
-gaagtgcagctggtgcagtccggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccacgtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-10-1*04
-gaagtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaggatctcctgtaagggttctggatacagcttt............accagctactggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagt......gactcttataccaactacagcccgtccttccaa...ggccaggtcaccatctcagctgacaagtccatcagcactgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-51*01
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
->IGHV5-51*02
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggaccggctgggtgcgccagatgcccgggaaaggcttggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgagaca
->IGHV5-51*03
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-51*04
-gaggtgcagctggtgcagtctggagca...gaggtgaaaaagccgggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccgggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagcccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatgtattactgtgcgaga
->IGHV5-51*05
-.....................................aaaagcccggggagtctctgaagatctcctgtaagggttctggatacagcttt............accagctactggatcggctgggtgcgccagatgcccaggaaaggcctggagtggatggggatcatctatcctggt......gactctgataccagatacagcccgtccttccaa...ggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggcctcggacaccgccatg
->IGHV5-78*01
-gaggtgcagctgttgcagtctgcagca...gaggtgaaaagacccggggagtctctgaggatctcctgtaagacttctggatacagcttt............accagctactggatccactgggtgcgccagatgcccgggaaagaactggagtggatggggagcatctatcctggg......aactctgataccagatacagcccatccttccaa...ggccacgtcaccatctcagccgacagctccagcagcaccgcctacctgcagtggagcagcctgaaggcctcggacgccgccatgtattattgtgtgaga
->IGHV6-1*01
-caggtacagctgcagcagtcaggtcca...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
->IGHV6-1*02
-caggtacagctgcagcagtcaggtccg...ggactggtgaagccctcgcagaccctctcactcacctgtgccatctccggggacagtgtctct......agcaacagtgctgcttggaactggatcaggcagtccccatcgagaggccttgagtggctgggaaggacatactacaggtcc...aagtggtataatgattatgcagtatctgtgaaa...agtcgaataaccatcaacccagacacatccaagaaccagttctccctgcagctgaactctgtgactcccgaggacacggctgtgtattactgtgcaagaga
->IGHV7-34-1*01
-...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......actgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
->IGHV7-34-1*02
-...ctgcagctggtgcagtctgggcct...gaggtgaagaagcctggggcctcagtgaaggtctcctataagtcttctggttacaccttc............accatctatggtatgaattgggtatgatagacccctggacagggctttgagtggatgtgatggatcatcacctac......aatgggaacccaacgtatacccacggcttcaca...ggatggtttgtcttctccatggacacgtctgtcagcacggcgtgtcttcagatcagcagcctaaaggctgaggacacggccgagtattactgtgcgaagta
->IGHV7-4-1*01
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatctgcagcctaaaggctgaggacactgccgtgtattactgtgcgaga
->IGHV7-4-1*02
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
->IGHV7-4-1*03
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcacggcatatctgcagatcagcacgctaaaggctgaggacactg
->IGHV7-4-1*04
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtattactgtgcgagaga
->IGHV7-4-1*05
-caggtgcagctggtgcaatctgggtct...gagttgaagaagcctggggcctcagtgaaggtttcctgcaaggcttctggatacaccttc............actagctatgctatgaattgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcaacaccaac......actgggaacccaacgtatgcccagggcttcaca...ggacggtttgtcttctccttggacacctctgtcagcatggcatatctgcagatcagcagcctaaaggctgaggacactgccgtgtgttactgtgcgagaga
->AIGHV7-40*03|
-ttttcaatagaaaagtcaaataatcta...agtgtcaatcagtggatgattagataaaatatgatatatgtaaatcatggaatactatgc............agccagtatggtatgaattcagtgtgaccagcccctggacaagggcttgagtggatgggatggatcatcacctac......actgggaacccaacatataccaacggcttcaca...ggacggtttctattctccatggacacctctgtcagcatggcgtatctgcagatcagcagcctaaaggctgaggacacggccgtgtatgactgtatgagaga
->IGHV7-81*01
-caggtgcagctggtgcagtctggccat...gaggtgaagcagcctggggcctcagtgaaggtctcctgcaaggcttctggttacagtttc............accacctatggtatgaattgggtgccacaggcccctggacaagggcttgagtggatgggatggttcaacacctac......actgggaacccaacatatgcccagggcttcaca...ggacggtttgtcttctccatggacacctctgccagcacagcatacctgcagatcagcagcctaaaggctgaggacatggccatgtattactgtgcgagata
--- a/tmp/baseline/comparePDFs.r	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,225 +0,0 @@
-options("warn"=-1)
-
-#from http://selection.med.yale.edu/baseline/Archive/Baseline%20Version%201.3/Baseline_Functions_Version1.3.r
-# Compute p-value of two distributions
-compareTwoDistsFaster <-function(sigma_S=seq(-20,20,length.out=4001), N=10000, dens1=runif(4001,0,1), dens2=runif(4001,0,1)){
-#print(c(length(dens1),length(dens2)))
-if(length(dens1)>1 & length(dens2)>1 ){
-	dens1<-dens1/sum(dens1)
-	dens2<-dens2/sum(dens2)
-	cum2 <- cumsum(dens2)-dens2/2
-	tmp<- sum(sapply(1:length(dens1),function(i)return(dens1[i]*cum2[i])))
-	#print(tmp)
-	if(tmp>0.5)tmp<-tmp-1
-	return( tmp )
-	}
-	else {
-	return(NA)
-	}
-	#return (sum(sapply(1:N,function(i)(sample(sigma_S,1,prob=dens1)>sample(sigma_S,1,prob=dens2))))/N)
-}  
-
-
-require("grid")
-arg <- commandArgs(TRUE)
-#arg <- c("300143","4","5")
-arg[!arg=="clonal"]
-input <- arg[1]
-output <- arg[2]
-rowIDs <- as.numeric(  sapply(arg[3:(max(3,length(arg)))],function(x){ gsub("chkbx","",x) } )  )
-
-numbSeqs = length(rowIDs)
-
-if ( is.na(rowIDs[1]) | numbSeqs>10 ) {
-  stop( paste("Error: Please select between one and 10 seqeunces to compare.") )
-}
-
-#load( paste("output/",sessionID,".RData",sep="") )
-load( input )
-#input
-
-xMarks = seq(-20,20,length.out=4001)
-
-plot_grid_s<-function(pdf1,pdf2,Sample=100,cex=1,xlim=NULL,xMarks = seq(-20,20,length.out=4001)){
-  yMax = max(c(abs(as.numeric(unlist(listPDFs[pdf1]))),abs(as.numeric(unlist(listPDFs[pdf2]))),0),na.rm=T) * 1.1
-
-  if(length(xlim==2)){
-    xMin=xlim[1]
-    xMax=xlim[2]
-  } else {
-    xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
-    xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
-    xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
-    xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-  
-    xMin_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][1]
-    xMin_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][1]
-    xMax_CDR2 = xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["CDR"]]>0.001])]
-    xMax_FWR2 = xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf2][[1]][["FWR"]]>0.001])]
-  
-    xMin=min(c(xMin_CDR,xMin_FWR,xMin_CDR2,xMin_FWR2,0),na.rm=TRUE)
-    xMax=max(c(xMax_CDR,xMax_FWR,xMax_CDR2,xMax_FWR2,0),na.rm=TRUE)
-  }
-
-  sigma<-approx(xMarks,xout=seq(xMin,xMax,length.out=Sample))$x
-  grid.rect(gp = gpar(col=gray(0.6),fill="white",cex=cex))
-  x <- sigma
-  pushViewport(viewport(x=0.175,y=0.175,width=0.825,height=0.825,just=c("left","bottom"),default.units="npc"))
-  #pushViewport(plotViewport(c(1.8, 1.8, 0.25, 0.25)*cex))
-  pushViewport(dataViewport(x, c(yMax,-yMax),gp = gpar(cex=cex),extension=c(0.05)))
-  grid.polygon(c(0,0,1,1),c(0,0.5,0.5,0),gp=gpar(col=grey(0.95),fill=grey(0.95)),default.units="npc")
-  grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.9),fill=grey(0.9)),default.units="npc")
-  grid.rect()
-  grid.xaxis(gp = gpar(cex=cex/1.1))
-  yticks = pretty(c(-yMax,yMax),8)
-  yticks = yticks[yticks>(-yMax) & yticks<(yMax)]
-  grid.yaxis(at=yticks,label=abs(yticks),gp = gpar(cex=cex/1.1))
-  if(length(listPDFs[pdf1][[1]][["CDR"]])>1){
-    ycdr<-approx(xMarks,listPDFs[pdf1][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(ycdr,"native"),gp=gpar(col=2,lwd=2))
-  }
-  if(length(listPDFs[pdf1][[1]][["FWR"]])>1){
-    yfwr<-approx(xMarks,listPDFs[pdf1][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(-yfwr,"native"),gp=gpar(col=4,lwd=2))
-   }
-
-  if(length(listPDFs[pdf2][[1]][["CDR"]])>1){
-    ycdr2<-approx(xMarks,listPDFs[pdf2][[1]][["CDR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(ycdr2,"native"),gp=gpar(col=2,lwd=2,lty=2))
-  }
-  if(length(listPDFs[pdf2][[1]][["FWR"]])>1){
-    yfwr2<-approx(xMarks,listPDFs[pdf2][[1]][["FWR"]],xout=seq(xMin,xMax,length.out=Sample),yleft=0,yright=0)$y
-    grid.lines(unit(x,"native"), unit(-yfwr2,"native"),gp=gpar(col=4,lwd=2,lty=2))
-   }
-
-  grid.lines(unit(c(0,1),"npc"), unit(c(0.5,0.5),"npc"),gp=gpar(col=1))
-  grid.lines(unit(c(0,0),"native"), unit(c(0,1),"npc"),gp=gpar(col=1,lwd=1,lty=3))
-
-  grid.text("Density", x = unit(-2.5, "lines"), rot = 90,gp = gpar(cex=cex))
-  grid.text( expression(paste("Selection Strength (", Sigma, ")", sep="")) , y = unit(-2.5, "lines"),gp = gpar(cex=cex))
-  
-  if(pdf1==pdf2 & length(listPDFs[pdf2][[1]][["FWR"]])>1 & length(listPDFs[pdf2][[1]][["CDR"]])>1 ){
-    pCDRFWR = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf1]][["FWR"]])       
-    pval = formatC(as.numeric(pCDRFWR),digits=3)
-    grid.text( substitute(expression(paste(P[CDR/FWR], "=", x, sep="")),list(x=pval))[[2]] , x = unit(0.02, "npc"),y = unit(0.98, "npc"),just=c("left", "top"),gp = gpar(cex=cex*1.2))
-  }
-  grid.text(paste("CDR"), x = unit(0.98, "npc"),y = unit(0.98, "npc"),just=c("right", "top"),gp = gpar(cex=cex*1.5))
-  grid.text(paste("FWR"), x = unit(0.98, "npc"),y = unit(0.02, "npc"),just=c("right", "bottom"),gp = gpar(cex=cex*1.5))
-  popViewport(2)
-}
-#plot_grid_s(1)
-
-
-p2col<-function(p=0.01){
-  breaks=c(-.51,-0.1,-.05,-0.01,-0.005,0,0.005,0.01,0.05,0.1,0.51)
-  i<-findInterval(p,breaks)
-  cols = c( rgb(0.8,1,0.8), rgb(0.6,1,0.6), rgb(0.4,1,0.4), rgb(0.2,1,0.2) , rgb(0,1,0),
-            rgb(1,0,0), rgb(1,.2,.2), rgb(1,.4,.4), rgb(1,.6,.6) , rgb(1,.8,.8) )
-  return(cols[i])
-}
-
-
-plot_pvals<-function(pdf1,pdf2,cex=1,upper=TRUE){
-  if(upper){
-    pCDR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["CDR"]], dens2=listPDFs[[pdf2]][["FWR"]])       
-    pFWR1FWR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens1=listPDFs[[pdf1]][["FWR"]], dens2=listPDFs[[pdf2]][["FWR"]])
-    pFWR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["FWR"]])       
-    pCDR1CDR2 = compareTwoDistsFaster(sigma_S=xMarks, N=10000, dens2=listPDFs[[pdf2]][["CDR"]], dens1=listPDFs[[pdf1]][["CDR"]])
-    grid.polygon(c(0.5,0.5,1,1),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1FWR2),fill=p2col(pFWR1FWR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,1,1),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1FWR2),fill=p2col(pCDR1FWR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,0,0),c(1,0.5,0.5,1),gp=gpar(col=p2col(pCDR1CDR2),fill=p2col(pCDR1CDR2)),default.units="npc")
-    grid.polygon(c(0.5,0.5,0,0),c(0,0.5,0.5,0),gp=gpar(col=p2col(pFWR1CDR2),fill=p2col(pFWR1CDR2)),default.units="npc")
-         
-    grid.lines(c(0,1),0.5,gp=gpar(lty=2,col=gray(0.925)))
-    grid.lines(0.5,c(0,1),gp=gpar(lty=2,col=gray(0.925)))
-
-    grid.text(formatC(as.numeric(pFWR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pCDR1FWR2),digits=3), x = unit(0.75, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pCDR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.75, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    grid.text(formatC(as.numeric(pFWR1CDR2),digits=3), x = unit(0.25, "npc"),y = unit(0.25, "npc"),just=c("center", "center"),gp = gpar(cex=cex))
-    
-           
- #   grid.text(paste("P = ",formatC(pCDRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.98, "npc"),just=c("center", "top"),gp = gpar(cex=cex))
- #   grid.text(paste("P = ",formatC(pFWRFWR,digits=3)), x = unit(0.5, "npc"),y = unit(0.02, "npc"),just=c("center", "bottom"),gp = gpar(cex=cex))
-  }
-  else{
-  }
-}
-
-
-##################################################################################
-################## The whole OCD's matrix ########################################
-##################################################################################
-
-#pdf(width=4*numbSeqs+1/3,height=4*numbSeqs+1/3)
-pdf( output ,width=4*numbSeqs+1/3,height=4*numbSeqs+1/3) 
-
-pushViewport(viewport(x=0.02,y=0.02,just = c("left", "bottom"),w =0.96,height=0.96,layout = grid.layout(numbSeqs+1,numbSeqs+1,widths=unit.c(unit(rep(1,numbSeqs),"null"),unit(4,"lines")),heights=unit.c(unit(4,"lines"),unit(rep(1,numbSeqs),"null")))))
-
-for( seqOne in 1:numbSeqs+1){
-  pushViewport(viewport(layout.pos.col = seqOne-1, layout.pos.row = 1))
-  if(seqOne>2){ 
-    grid.polygon(c(0,0,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
-    grid.polygon(c(1,1,0.5,0.5),c(0,0.5,0.5,0),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
-    grid.polygon(c(0,0,1,1),c(1,0.5,0.5,1),gp=gpar(col=grey(0.5)),default.units="npc")
-       
-    grid.text(y=.25,x=0.75,"FWR",gp = gpar(cex=1.5),just="center")
-    grid.text(y=.25,x=0.25,"CDR",gp = gpar(cex=1.5),just="center")
-  }
-  grid.rect(gp = gpar(col=grey(0.9)))
-  grid.text(y=.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),just="center")
-  popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
-  pushViewport(viewport(layout.pos.row = seqOne, layout.pos.col = numbSeqs+1))
-  if(seqOne<=numbSeqs){   
-    grid.polygon(c(0,0.5,0.5,0),c(0,0,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.95)),default.units="npc")
-    grid.polygon(c(0,0.5,0.5,0),c(1,1,0.5,0.5),gp=gpar(col=grey(0.5),fill=grey(0.9)),default.units="npc")
-    grid.polygon(c(1,0.5,0.5,1),c(0,0,1,1),gp=gpar(col=grey(0.5)),default.units="npc")
-    grid.text(x=.25,y=0.75,"CDR",gp = gpar(cex=1.5),just="center",rot=270)
-    grid.text(x=.25,y=0.25,"FWR",gp = gpar(cex=1.5),just="center",rot=270)
-  }
-  grid.rect(gp = gpar(col=grey(0.9)))
-  grid.text(x=0.75,substr(paste(names(listPDFs)[rowIDs[seqOne-1]]),1,16),gp = gpar(cex=2),rot=270,just="center")
-  popViewport(1)
-}
-
-for( seqOne in 1:numbSeqs+1){
-  for(seqTwo in 1:numbSeqs+1){
-    pushViewport(viewport(layout.pos.col = seqTwo-1, layout.pos.row = seqOne))
-    if(seqTwo>seqOne){
-      plot_pvals(rowIDs[seqOne-1],rowIDs[seqTwo-1],cex=2)
-      grid.rect()
-    }    
-    popViewport(1)
-  }
-}
-   
-
-xMin=0
-xMax=0.01
-for(pdf1 in rowIDs){
-  xMin_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][1]
-  xMin_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][1]
-  xMax_CDR = xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["CDR"]]>0.001])]
-  xMax_FWR = xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001][length(xMarks[listPDFs[pdf1][[1]][["FWR"]]>0.001])]
-  xMin=min(c(xMin_CDR,xMin_FWR,xMin),na.rm=TRUE)
-  xMax=max(c(xMax_CDR,xMax_FWR,xMax),na.rm=TRUE)
-}
-
-
-
-for(i in 1:numbSeqs+1){
-  for(j in (i-1):numbSeqs){    
-    pushViewport(viewport(layout.pos.col = i-1, layout.pos.row = j+1))
-    grid.rect()
-    plot_grid_s(rowIDs[i-1],rowIDs[j],cex=1)
-    popViewport(1)
-  }
-}
-
-dev.off() 
-
-cat("Success", paste(rowIDs,collapse="_"),sep=":")
-
--- a/tmp/baseline/filter.r	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,35 +0,0 @@
-arg = commandArgs(TRUE)
-summaryfile = arg[1]
-gappedfile = arg[2]
-selection = arg[3]
-output = arg[4]
-print(paste("selection = ", selection))
-
-
-summarydat = read.table(summaryfile, header=T, sep="\t", fill=T, stringsAsFactors=F)
-gappeddat = read.table(gappedfile, header=T, sep="\t", fill=T, stringsAsFactors=F)
-
-#dat = data.frame(merge(gappeddat, summarydat, by="Sequence.ID", all.x=T))
-
-dat = cbind(gappeddat, summarydat$AA.JUNCTION)
-
-colnames(dat)[length(dat)] = "AA.JUNCTION"
-
-dat$VGene = gsub("^Homsap ", "", dat$V.GENE.and.allele)
-dat$VGene = gsub("[*].*", "", dat$VGene)
-
-dat$DGene = gsub("^Homsap ", "", dat$D.GENE.and.allele)
-dat$DGene = gsub("[*].*", "", dat$DGene)
-
-dat$JGene = gsub("^Homsap ", "", dat$J.GENE.and.allele)
-dat$JGene = gsub("[*].*", "", dat$JGene)
-
-#print(str(dat))
-
-dat$past = do.call(paste, c(dat[unlist(strsplit(selection, ","))], sep = ":"))
-
-dat = dat[!duplicated(dat$past), ]
-
-dat = dat[dat$Functionality != "No results" & dat$Functionality != "unproductive",]
-
-write.table(x=dat, file=output, sep="\t",quote=F,row.names=F,col.names=T)
--- a/tmp/baseline/script_imgt.py	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,79 +0,0 @@
-#import xlrd #avoid dep
-import argparse
-import re
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-parser.add_argument("--id", help="ID to be used at the '>>>' line in the output")
-
-args = parser.parse_args()
-
-refdic = dict()
-with open(args.ref, 'r') as ref:
-	currentSeq = ""
-	currentId = ""
-	for line in ref:
-		if line[0] is ">":
-			if currentSeq is not "" and currentId is not "":
-				refdic[currentId[1:]] = currentSeq
-			currentId = line.rstrip()
-			currentSeq = ""
-		else:
-			currentSeq += line.rstrip()
-	refdic[currentId[1:]] = currentSeq
-	
-
-vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?\*\d{1,2})"]#,
-#						r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
-#						r"(IGKV[0-3]D?-[0-9]{1,2})",
-#						r"(IGLV[0-9]-[0-9]{1,2})",
-#						r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
-#						r"(TRGV[234589])",
-#						r"(TRDV[1-3])"]
-
-#vPattern = re.compile(r"|".join(vPattern))
-vPattern = re.compile("|".join(vPattern))
-
-def filterGene(s, pattern):
-    if type(s) is not str:
-        return None
-    res = pattern.search(s)
-    if res:
-        return res.group(0)
-    return None
-
-
-
-currentSeq = ""
-currentId = ""
-first=True
-with open(args.input, 'r') as i:
-	with open(args.output, 'a') as o:
-		o.write(">>>" + args.id + "\n")
-		outputdic = dict()
-		for line in i:
-			if first:
-				first = False
-				continue
-			linesplt = line.split("\t")
-			ref = filterGene(linesplt[1], vPattern)
-			if not ref or not linesplt[2].rstrip():
-				continue
-			if ref in outputdic:
-				outputdic[ref] += [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
-			else:
-				outputdic[ref] = [(linesplt[0].replace(">", ""), linesplt[2].replace(">", "").rstrip())]
-		#print outputdic
-		
-		for k in outputdic.keys():
-			if k in refdic:
-				o.write(">>" + k + "\n")
-				o.write(refdic[k] + "\n")
-				for seq in outputdic[k]:
-					#print seq
-					o.write(">" + seq[0] + "\n")
-					o.write(seq[1] + "\n")
-			else:
-				print k + " not in reference, skipping " + k
--- a/tmp/baseline/script_xlsx.py	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-import xlrd
-import argparse
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--input", help="Excel input file containing one or more sheets where column G has the gene annotation, H has the sequence id and J has the sequence")
-parser.add_argument("--ref", help="Reference file")
-parser.add_argument("--output", help="Output file")
-
-args = parser.parse_args()
-
-gene_column = 6
-id_column = 7
-seq_column = 8
-LETTERS = [x for x in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
-
-
-refdic = dict()
-with open(args.ref, 'r') as ref:
-	currentSeq = ""
-	currentId = ""
-	for line in ref.readlines():
-		if line[0] is ">":
-			if currentSeq is not "" and currentId is not "":
-				refdic[currentId[1:]] = currentSeq
-			currentId = line.rstrip()
-			currentSeq = ""
-		else:
-			currentSeq += line.rstrip()
-	refdic[currentId[1:]] = currentSeq
-	
-currentSeq = ""
-currentId = ""
-with xlrd.open_workbook(args.input, 'r') as wb:
-	with open(args.output, 'a') as o:
-		for sheet in wb.sheets():
-			if sheet.cell(1,gene_column).value.find("IGHV") < 0:
-				print "Genes not in column " + LETTERS[gene_column] + ", skipping sheet " + sheet.name
-				continue
-			o.write(">>>" + sheet.name + "\n")
-			outputdic = dict()
-			for rowindex in range(1, sheet.nrows):
-				ref = sheet.cell(rowindex, gene_column).value.replace(">", "")
-				if ref in outputdic:
-					outputdic[ref] += [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
-				else:
-					outputdic[ref] = [(sheet.cell(rowindex, id_column).value.replace(">", ""), sheet.cell(rowindex, seq_column).value)]
-			#print outputdic
-			
-			for k in outputdic.keys():
-				if k in refdic:
-					o.write(">>" + k + "\n")
-					o.write(refdic[k] + "\n")
-					for seq in outputdic[k]:
-						#print seq
-						o.write(">" + seq[0] + "\n")
-						o.write(seq[1] + "\n")
-				else:
-					print k + " not in reference, skipping " + k
--- a/tmp/baseline/wrapper.sh	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,104 +0,0 @@
-#!/bin/bash
-dir="$(cd "$(dirname "$0")" && pwd)"
-
-testID=$1
-species=$2
-substitutionModel=$3
-mutabilityModel=$4
-clonal=$5
-fixIndels=$6
-region=$7
-inputs=$8
-inputs=($inputs)
-IDs=$9
-IDs=($IDs)
-ref=${10}
-output=${11}
-selection=${12}
-output_table=${13}
-outID="result"
-
-echo "$PWD"
-
-echo "testID = $testID"
-echo "species = $species"
-echo "substitutionModel = $substitutionModel"
-echo "mutabilityModel = $mutabilityModel"
-echo "clonal = $clonal"
-echo "fixIndels = $fixIndels"
-echo "region = $region"
-echo "inputs = ${inputs[@]}"
-echo "IDs = ${IDs[@]}"
-echo "ref = $ref"
-echo "output = $output"
-echo "outID = $outID"
-
-fasta="$PWD/baseline.fasta"
-
-
-count=0
-for current in ${inputs[@]}
-do
-	f=$(file $current)
-	zipType="Zip archive"
-	if [[ "$f" == *"$zipType"* ]] || [[ "$f" == *"XZ compressed data"* ]]
-	then
-		id=${IDs[$count]}
-		echo "id=$id"
-		if [[ "$f" == *"Zip archive"* ]] ; then
-			echo "Zip archive"
-			echo "unzip $input -d $PWD/files/"
-			unzip $current -d "$PWD/$id/"
-		elif [[ "$f" == *"XZ compressed data"* ]] ; then
-			echo "ZX archive"
-			echo "tar -xJf $input -C $PWD/files/"
-			mkdir -p "$PWD/$id/files"
-			tar -xJf $current -C "$PWD/$id/files/"
-		fi
-		summaryfile="$PWD/summary_${id}.txt"
-		gappedfile="$PWD/gappednt_${id}.txt"
-		filtered="$PWD/filtered_${id}.txt"
-		filecount=`ls -l $PWD/$id/ | wc -l`
-		if [[ "$filecount" -eq "2" ]]
-		then
-			cat $PWD/$id/*/1_* > $summaryfile
-			cat $PWD/$id/*/2_* > $gappedfile
-		else
-			cat $PWD/$id/1_* > $summaryfile
-			cat $PWD/$id/2_* > $gappedfile
-		fi
-		Rscript $dir/filter.r $summaryfile $gappedfile "$selection" $filtered 2>&1
-		
-		final="$PWD/final_${id}.txt"
-		cat $filtered | cut -f2,4,7 > $final
-		python $dir/script_imgt.py --input $final --ref $ref --output $fasta --id $id
-	else
-		python $dir/script_xlsx.py --input $current --ref $ref --output $fasta
-	fi
-	count=$((count+1))
-done
-
-if [[ $(wc -l < $fasta) -eq "1" ]]; then
-	echo "No sequences in the fasta file, exiting"
-	exit 0
-fi
-
-workdir="$PWD"
-cd $dir
-echo "file: ${inputs[0]}"
-#Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region ${inputs[0]} $workdir/ $outID 2>&1
-Rscript --verbose $dir/Baseline_Main.r $testID $species $substitutionModel $mutabilityModel $clonal $fixIndels $region $fasta $workdir/ $outID 2>&1
-
-echo "$workdir/${outID}.txt"
-
-rows=`tail -n +2 $workdir/${outID}.txt | grep -v "All sequences combined" | grep -n 'Group' | grep -Eoh '^[0-9]+' | tr '\n' ' '`
-rows=($rows)
-#unset rows[${#rows[@]}-1]
-
-cd $dir
-Rscript --verbose $dir/comparePDFs.r $workdir/${outID}.RData $output ${rows[@]} 2>&1
-cp $workdir/result.txt ${output_table}
-
-
-
-
--- a/tmp/igat.r	Thu Aug 04 04:52:51 2016 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-args <- commandArgs(trailingOnly = TRUE)
-
-imgt.dir = args[1]
-merged.file = args[2]
-gene = args[3]
-
-merged = read.table(merged.file, header=T, sep="\t", fill=T, stringsAsFactors=F)
-
-if(gene != "-"){
-	merged = merged[grepl(gene, merged$best_match),]
-}
-
-merged = merged[!grepl("unmatched", merged$best_match),]
-
-for(f in list.files(imgt.dir, pattern="*.txt$")){
-	#print(paste("filtering", f))
-	path = paste(imgt.dir, f, sep="")
-	dat = read.table(path, header=T, sep="\t", fill=T, quote="", stringsAsFactors=F, check.names=FALSE)
-	
-	dat = dat[dat[,"Sequence ID"] %in% merged$Sequence.ID,]
-	
-	if(nrow(dat) > 0 & grepl("^8_", f)){ #change the FR1 columns to 0 in the "8_..." file
-		dat[,grepl("^FR1", names(dat))] = 0
-	}
-	
-	write.table(dat, path, quote=F, sep="\t", row.names=F, col.names=T)
-}
--- a/tool_dependencies.xml	Thu Aug 04 04:52:51 2016 -0400
+++ b/tool_dependencies.xml	Tue Aug 09 07:20:41 2016 -0400
@@ -6,14 +6,14 @@
 	<package name="blastn" version="1.0"> 
         <install version="1.0">
             <actions>
-							<action type="download_by_url">ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.30/ncbi-blast-2.2.30+-x64-linux.tar.gz</action>
-							<action type="move_file">
-								<source>bin/blastn</source>
-								<destination>$INSTALL_DIR</destination>
-							</action>
-							<action type="set_environment">
-								<environment_variable name="BLASTN_DIR" action="set_to">$INSTALL_DIR</environment_variable>
-							</action>
+				<action type="download_by_url">ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.30/ncbi-blast-2.2.30+-x64-linux.tar.gz</action>
+				<action type="move_file">
+					<source>bin/blastn</source>
+					<destination>$INSTALL_DIR</destination>
+				</action>
+				<action type="set_environment">
+					<environment_variable name="BLASTN_DIR" action="set_to">$INSTALL_DIR</environment_variable>
+				</action>
             </actions>
         </install>
         <readme>
--- a/wrapper.sh	Thu Aug 04 04:52:51 2016 -0400
+++ b/wrapper.sh	Tue Aug 09 07:20:41 2016 -0400
@@ -15,6 +15,7 @@
 naive_output_cm=${11}
 filter_unique=${12}
 class_filter=${13}
+empty_region_filter=${14}
 mkdir $outdir
 
 tar -xzf $dir/style.tar.gz -C $outdir
@@ -80,7 +81,7 @@
 echo "---------------- merge_and_filter.r ----------------"
 echo "---------------- merge_and_filter.r ----------------<br />" >> $log
 
-Rscript $dir/merge_and_filter.r $PWD/summary.txt $PWD/sequences.txt $PWD/mutationanalysis.txt $PWD/mutationstats.txt $PWD/hotspots.txt $outdir/identified_genes.txt $outdir/merged.txt $outdir/before_unique_filter.txt $outdir/unmatched.txt $method $functionality $unique ${filter_unique} ${class_filter} 2>&1
+Rscript $dir/merge_and_filter.r $PWD/summary.txt $PWD/sequences.txt $PWD/mutationanalysis.txt $PWD/mutationstats.txt $PWD/hotspots.txt $outdir/identified_genes.txt $outdir/merged.txt $outdir/before_unique_filter.txt $outdir/unmatched.txt $method $functionality $unique ${filter_unique} ${class_filter} ${empty_region_filter} 2>&1
 
 echo "---------------- creating new IMGT zip ----------------"
 echo "---------------- creating new IMGT zip ----------------<br />" >> $log
@@ -107,32 +108,24 @@
 mkdir $outdir/new_IMGT_cm
 cp $outdir/new_IMGT/* $outdir/new_IMGT_cm
 
-Rscript $dir/tmp/igat.r $outdir/new_IMGT/ $outdir/merged.txt "-" 2>&1
-Rscript $dir/tmp/igat.r $outdir/new_IMGT_ca/ $outdir/merged.txt "ca" 2>&1
-Rscript $dir/tmp/igat.r $outdir/new_IMGT_cg/ $outdir/merged.txt "cg" 2>&1
-Rscript $dir/tmp/igat.r $outdir/new_IMGT_cm/ $outdir/merged.txt "cm" 2>&1
+Rscript $dir/new_imgt.r $outdir/new_IMGT/ $outdir/merged.txt "-" 2>&1
+Rscript $dir/new_imgt.r $outdir/new_IMGT_ca/ $outdir/merged.txt "ca" 2>&1
+Rscript $dir/new_imgt.r $outdir/new_IMGT_cg/ $outdir/merged.txt "cg" 2>&1
+Rscript $dir/new_imgt.r $outdir/new_IMGT_cm/ $outdir/merged.txt "cm" 2>&1
 
 
 tmp="$PWD"
 cd $outdir/new_IMGT/ #tar weirdness...
 tar -cJf ../new_IMGT.txz *
-cp $dir/tmp/IgAT.xlsm $outdir/new_IMGT/IgAT.xlsm
-zip -r ../IgAT.zip *
 
 cd $outdir/new_IMGT_ca/
 tar -cJf ../new_IMGT_ca.txz *
-cp $dir/tmp/IgAT.xlsm $outdir/new_IMGT_ca/IgAT.xlsm
-zip -r ../IgAT_ca.zip *
 
 cd $outdir/new_IMGT_cg/
 tar -cJf ../new_IMGT_cg.txz *
-cp $dir/tmp/IgAT.xlsm $outdir/new_IMGT_cg/IgAT.xlsm
-zip -r ../IgAT_cg.zip *
 
 cd $outdir/new_IMGT_cm/
 tar -cJf ../new_IMGT_cm.txz *
-cp $dir/tmp/IgAT.xlsm $outdir/new_IMGT_cm/IgAT.xlsm
-zip -r ../IgAT_cm.zip *
 
 cd $tmp
 
@@ -219,17 +212,17 @@
 		echo "<th><a href='matched_${gene}_${func}.txt'>${gene} (N = $tmp)</a></th>" >> $output
 	done
 	
+	tmp=`cat $outdir/all_${func}_n.txt`
+	echo "<th><a href='matched_all_${func}.txt'>all (N = $tmp)</a></th>" >> $output
 	tmp=`cat $outdir/unmatched_${func}_n.txt`
 	echo "<th><a href='unmatched.txt'>unmatched (N = ${unmatched_count})</a></th>" >> $output
-	tmp=`cat $outdir/all_${func}_n.txt`
-	echo "<th><a href='matched_all_${func}.txt'>all (N = $tmp)</a></th>" >> $output
 
 	while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz unx uny unz allx ally allz
 	do
 		if [ "$name" == "FR S/R (ratio)" ] || [ "$name" == "CDR S/R (ratio)" ] ; then #meh
 			echo "<tr><td>$name</td><td>${cax}/${cay} (${caz})</td><td>${ca1x}/${ca1y} (${ca1z})</td><td>${ca2x}/${ca2y} (${ca2z})</td><td>${cgx}/${cgy} (${cgz})</td><td>${cg1x}/${cg1y} (${cg1z})</td><td>${cg2x}/${cg2y} (${cg2z})</td><td>${cg3x}/${cg3y} (${cg3z})</td><td>${cg4x}/${cg4y} (${cg4z})</td><td>${cmx}/${cmy} (${cmz})</td><td>${allx}/${ally} (${allz})</td></tr>" >> $output
 		else
-			echo "<tr><td>$name</td><td>${cax}/${cay} (${caz}%)</td><td>${ca1x}/${ca1y} (${ca1z}%)</td><td>${ca2x}/${ca2y} (${ca2z}%)</td><td>${cgx}/${cgy} (${cgz}%)</td><td>${cg1x}/${cg1y} (${cg1z}%)</td><td>${cg2x}/${cg2y} (${cg2z}%)</td><td>${cg3x}/${cg3y} (${cg3z}%)</td><td>${cg4x}/${cg4y} (${cg4z}%)</td><td>${cmx}/${cmy} (${cmz}%)</td><td>${unx}/${uny} (${unz}%)</td><td>${allx}/${ally} (${allz}%)</td></tr>" >> $output
+			echo "<tr><td>$name</td><td>${cax}/${cay} (${caz}%)</td><td>${ca1x}/${ca1y} (${ca1z}%)</td><td>${ca2x}/${ca2y} (${ca2z}%)</td><td>${cgx}/${cgy} (${cgz}%)</td><td>${cg1x}/${cg1y} (${cg1z}%)</td><td>${cg2x}/${cg2y} (${cg2z}%)</td><td>${cg3x}/${cg3y} (${cg3z}%)</td><td>${cg4x}/${cg4y} (${cg4z}%)</td><td>${cmx}/${cmy} (${cmz}%)</td><td>${allx}/${ally} (${allz}%)</td><td>${unx}/${uny} (${unz}%)</td></tr>" >> $output
 		fi
 	done < $outdir/data_${func}.txt
 	echo "</table>" >> $output
@@ -259,21 +252,37 @@
 
 echo "<div class='tabbertab' title='Transition tables'>" >> $output
 
+echo "<table border='0'>" >> $output
+
 for gene in ${genes[@]}
 do
-	echo "<table border='1'><caption>$gene transition table</caption>" >> $output
+	echo "<tr>" >> $output
+	echo "<td><h1>${gene}</h1></td>" >> $output
+	echo "<td><img src='transitions_heatmap_${gene}.png' /></td>" >> $output
+	echo "<td><img src='transitions_stacked_${gene}.png' /></td>" >> $output
+	echo "<td><table border='1'>" >> $output
 	while IFS=, read from a c g t
 		do
 			echo "<tr><td>$from</td><td>$a</td><td>$c</td><td>$g</td><td>$t</td></tr>" >> $output
 	done < $outdir/transitions_${gene}_sum.txt
-	echo "</table>" >> $output
+	echo "</table></td>" >> $output
+	
+	echo "</tr>" >> $output
 done
 
-echo "<table border='1'><caption>All transition table</caption>" >> $output
+echo "<tr>" >> $output
+echo "<td><h1>All</h1></td>" >> $output
+echo "<td><img src='transitions_heatmap_all.png' /></td>" >> $output
+echo "<td><img src='transitions_stacked_all.png' /></td>" >> $output
+echo "<td><table border='1'>" >> $output
 while IFS=, read from a c g t
 	do
 		echo "<tr><td>$from</td><td>$a</td><td>$c</td><td>$g</td><td>$t</td></tr>" >> $output
 done < $outdir/transitions_all_sum.txt
+echo "</table></td>" >> $output
+
+echo "</tr>" >> $output
+
 echo "</table>" >> $output
 
 echo "</div>" >> $output #transition tables tab end
@@ -315,30 +324,32 @@
 
 echo "<div class='tabbertab' title='Downloads'>" >> $output
 
-echo "<a href='unmatched.txt'>unmatched</a><br />" >> $output
-echo "<a href='motif_per_seq.txt'>motif per sequence</a><br />" >> $output
-echo "<a href='merged.txt'>all data</a><br />" >> $output
-echo "<a href='mutation_by_id.txt'>mutations by id</a><br />" >> $output
-echo "<a href='aa_id_mutations.txt'>AA mutations location by id</a><br />" >> $output
-echo "<a href='absent_aa_id.txt'>Absant AA locations by id</a><br />" >> $output
-echo "<a href='sequence_overview/index.html'>Sequence Overview</a><br />" >> $output
-echo "<a href='base_overview.html'>Base overview</a><br />" >> $output
-echo "<a href='baseline.pdf'>Baseline PDF</a><br />" >> $output
-echo "<a href='baseline.txt'>Baseline Table</a><br />" >> $output
-echo "<a href='baseline_ca.pdf'>Baseline ca PDF</a><br />" >> $output
-echo "<a href='baseline_ca.txt'>Baseline ca Table</a><br />" >> $output
-echo "<a href='baseline_cg.pdf'>Baseline cg PDF</a><br />" >> $output
-echo "<a href='baseline_cg.txt'>Baseline cg Table</a><br />" >> $output
-echo "<a href='baseline_cm.pdf'>Baseline cm PDF</a><br />" >> $output
-echo "<a href='baseline_cm.txt'>Baseline cm Table</a><br />" >> $output
-echo "<a href='IgAT.zip'>IgAT zip</a><br />" >> $output
-echo "<a href='IgAT_ca.zip'>IgAT ca zip</a><br />" >> $output
-echo "<a href='IgAT_cg.zip'>IgAT cg zip</a><br />" >> $output
-echo "<a href='IgAT_cm.zip'>IgAT cm zip</a><br />" >> $output
-echo "<a href='new_IMGT.txz'>Filtered IMGT zip</a><br />" >> $output
-echo "<a href='new_IMGT_ca.txz'>Filtered ca IMGT zip</a><br />" >> $output
-echo "<a href='new_IMGT_cg.txz'>Filtered cg IMGT zip</a><br />" >> $output
-echo "<a href='new_IMGT_cm.txz'>Filtered cm IMGT zip</a><br />" >> $output
+echo "<table border='1' width='700px'>" >> $output
+echo "<tr><td>The complete dataset</td><td><a href='merged.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>The alignment info on the unmatched sequences</td><td><a href='unmatched.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>Motif data per sequence ID</td><td><a href='motif_per_seq.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>Mutation data per sequence ID</td><td><a href='mutation_by_id.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>AA mutation data per sequence ID</td><td><a href='aa_id_mutations.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>Absent AA location data per sequence ID</td><td><a href='absent_aa_id.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>CDR1+FR2+CDR2+FR3+CDR3 sequences that show up more than once</td><td><a href='sequence_overview/index.html'>Download</a></td></tr>" >> $output
+echo "<tr><td>Base count for every sequence</td><td><a href='base_overview.html'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline PDF (<href a='http://selection.med.yale.edu/baseline/'>http://selection.med.yale.edu/baseline/</a>)</td><td><a href='baseline.pdf'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline data</td><td><a href='baseline.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline ca PDF</td><td><a href='baseline_ca.pdf'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline ca data</td><td><a href='baseline_ca.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline cg PDF</td><td><a href='baseline_cg.pdf'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline cg data</td><td><a href='baseline_cg.txt'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline cm PDF</td><td><a href='baseline_cm.pdf'>Download</a></td></tr>" >> $output
+echo "<tr><td>Baseline cm data</td><td><a href='baseline_cm.txt'>Download</a></td></tr>" >> $output
+#echo "<tr><td></td><td><a href='IgAT.zip'>IgAT zip</a></td></tr>" >> $output
+#echo "<tr><td></td><td><a href='IgAT_ca.zip'>IgAT ca zip</a></td></tr>" >> $output
+#echo "<tr><td></td><td><a href='IgAT_cg.zip'>IgAT cg zip</a></td></tr>" >> $output
+#echo "<tr><td></td><td><a href='IgAT_cm.zip'>IgAT cm zip</a></td></tr>" >> $output
+echo "<tr><td>An IMGT archive with just the matched and filtered sequences</td><td><a href='new_IMGT.txz'>Download</a></td></tr>" >> $output
+echo "<tr><td>An IMGT archive with just the matched and filtered ca sequences</td><td><a href='new_IMGT_ca.txz'>Download</a></td></tr>" >> $output
+echo "<tr><td>An IMGT archive with just the matched and filtered cg sequences</td><td><a href='new_IMGT_cg.txz'>Download</a></td></tr>" >> $output
+echo "<tr><td>An IMGT archive with just the matched and filtered cm sequences</td><td><a href='new_IMGT_cm.txz'>Download</a></td></tr>" >> $output
+echo "</table>" >> $output
 
 echo "</div>" >> $output #downloads tab end
 
@@ -356,7 +367,7 @@
 mkdir $outdir/baseline/ca_cg_cm
 if [[ $(wc -l < $outdir/new_IMGT/1_Summary.txt) -gt "1" ]]; then
 	cd $outdir/baseline/ca_cg_cm
-	bash $dir/tmp/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT.txz "ca_cg_cm" "$dir/tmp/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline.pdf" "Sequence.ID" "$outdir/baseline.txt"	
+	bash $dir/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT.txz "ca_cg_cm" "$dir/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline.pdf" "Sequence.ID" "$outdir/baseline.txt"	
 else
 	echo "No sequences" > "$outdir/baseline.txt"	
 fi
@@ -364,7 +375,7 @@
 mkdir $outdir/baseline/ca
 if [[ $(wc -l < $outdir/new_IMGT_ca/1_Summary.txt) -gt "1" ]]; then
 	cd $outdir/baseline/ca
-	bash $dir/tmp/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT_ca.txz "ca" "$dir/tmp/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline_ca.pdf" "Sequence.ID" "$outdir/baseline_ca.txt"
+	bash $dir/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT_ca.txz "ca" "$dir/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline_ca.pdf" "Sequence.ID" "$outdir/baseline_ca.txt"
 else
 	echo "No ca sequences" > "$outdir/baseline_ca.txt"	
 fi
@@ -372,7 +383,7 @@
 mkdir $outdir/baseline/cg
 if [[ $(wc -l < $outdir/new_IMGT_cg/1_Summary.txt) -gt "1" ]]; then
 	cd $outdir/baseline/cg
-	bash $dir/tmp/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT_cg.txz "cg" "$dir/tmp/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline_cg.pdf" "Sequence.ID" "$outdir/baseline_cg.txt"
+	bash $dir/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT_cg.txz "cg" "$dir/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline_cg.pdf" "Sequence.ID" "$outdir/baseline_cg.txt"
 else
 	echo "No cg sequences" > "$outdir/baseline_cg.txt"	
 fi
@@ -380,7 +391,7 @@
 mkdir $outdir/baseline/cm
 if [[ $(wc -l < $outdir/new_IMGT_cm/1_Summary.txt) -gt "1" ]]; then
 	cd $outdir/baseline/cm
-	bash $dir/tmp/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT_cm.txz "cm" "$dir/tmp/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline_cm.pdf" "Sequence.ID" "$outdir/baseline_cm.txt"
+	bash $dir/baseline/wrapper.sh 1 1 1 1 0 0 "25:26:38:55:65:104:-" $outdir/new_IMGT_cm.txz "cm" "$dir/baseline/IMGT-reference-seqs-IGHV-2015-11-05.fa" "$outdir/baseline_cm.pdf" "Sequence.ID" "$outdir/baseline_cm.txt"
 else
 	echo "No cm sequences" > "$outdir/baseline_cm.txt"	
 fi
@@ -392,14 +403,18 @@
 
 if [[ "$naive_output" != "None" ]]
 then
-	echo "---------------- imgt_loader.r ----------------"
-	echo "---------------- imgt_loader.r ----------------<br />" >> $log
+	#echo "---------------- imgt_loader.r ----------------"
+	#echo "---------------- imgt_loader.r ----------------<br />" >> $log
 	#python $dir/imgt_loader.py --summ $PWD/summary.txt --aa $PWD/aa.txt --junction $PWD/junction.txt --output $naive_output
-	Rscript --verbose $dir/imgt_loader.r $PWD/summary.txt $PWD/aa.txt $PWD/junction.txt $outdir/loader_output.txt 2>&1
+	#Rscript --verbose $dir/imgt_loader.r $PWD/summary.txt $PWD/aa.txt $PWD/junction.txt $outdir/loader_output.txt 2>&1
 
-	echo "---------------- naive_output.r ----------------"
-	echo "---------------- naive_output.r ----------------<br />" >> $log
-	Rscript $dir/naive_output.r $outdir/loader_output.txt $outdir/merged.txt ${naive_output_ca} ${naive_output_cg} ${naive_output_cm} $outdir/ntoverview.txt $outdir/ntsum.txt 2>&1
+	#echo "---------------- naive_output.r ----------------"
+	#echo "---------------- naive_output.r ----------------<br />" >> $log
+	#Rscript $dir/naive_output.r $outdir/loader_output.txt $outdir/merged.txt ${naive_output_ca} ${naive_output_cg} ${naive_output_cm} $outdir/ntoverview.txt $outdir/ntsum.txt 2>&1
+	
+	cp $outdir/new_IMGT_ca.txz ${naive_output_ca}
+	cp $outdir/new_IMGT_cg.txz ${naive_output_cg}
+	cp $outdir/new_IMGT_cm.txz ${naive_output_cm}
 fi
 
 echo "</table>" >> $outdir/base_overview.html