Mercurial > repos > davidvanzessen > mutation_analysis
comparison mutation_analysis.r @ 49:5c6b9e99d576 draft
Uploaded
author | davidvanzessen |
---|---|
date | Wed, 18 Nov 2015 05:55:04 -0500 |
parents | 099cc1254f74 |
children | 7290a88ea202 |
comparison
equal
deleted
inserted
replaced
48:d09b1bdfd388 | 49:5c6b9e99d576 |
---|---|
1 library(data.table) | |
2 library(ggplot2) | |
3 | |
1 args <- commandArgs(trailingOnly = TRUE) | 4 args <- commandArgs(trailingOnly = TRUE) |
2 | 5 |
3 input = args[1] | 6 input = args[1] |
4 genes = unlist(strsplit(args[2], ",")) | 7 genes = unlist(strsplit(args[2], ",")) |
5 outputdir = args[3] | 8 outputdir = args[3] |
131 | 134 |
132 | 135 |
133 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | 136 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") |
134 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | 137 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) |
135 | 138 |
136 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="") | 139 |
140 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") | |
141 #totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") | |
137 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | 142 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) |
143 | |
144 transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") | |
145 dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) | |
146 | |
147 totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") | |
148 #totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") | |
149 dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) | |
150 | |
138 | 151 |
139 FRRegions = regions[grepl("FR", regions)] | 152 FRRegions = regions[grepl("FR", regions)] |
140 CDRRegions = regions[grepl("CDR", regions)] | 153 CDRRegions = regions[grepl("CDR", regions)] |
141 | 154 |
142 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | 155 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") |
149 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | 162 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) |
150 | 163 |
151 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | 164 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") |
152 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | 165 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) |
153 | 166 |
154 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") | 167 mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") |
155 | 168 |
156 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | 169 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) |
157 | 170 |
158 setwd(outputdir) | 171 setwd(outputdir) |
159 | 172 |
160 nts = c("a", "c", "g", "t") | 173 nts = c("a", "c", "g", "t") |
161 zeros=rep(0, 4) | 174 zeros=rep(0, 4) |
162 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=7) | 175 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) |
163 for(i in 1:length(genes)){ | 176 for(i in 1:length(genes)){ |
164 gene = genes[i] | 177 gene = genes[i] |
165 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] | 178 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] |
166 if(gene == "."){ | 179 if(gene == "."){ |
167 tmp = dat | 180 tmp = dat |
171 y = (j * 3) + 2 | 184 y = (j * 3) + 2 |
172 z = (j * 3) + 3 | 185 z = (j * 3) + 3 |
173 matrx[1,x] = sum(tmp$VRegionMutations) | 186 matrx[1,x] = sum(tmp$VRegionMutations) |
174 matrx[1,y] = sum(tmp$VRegionNucleotides) | 187 matrx[1,y] = sum(tmp$VRegionNucleotides) |
175 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | 188 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) |
189 | |
176 matrx[2,x] = sum(tmp$transitionMutations) | 190 matrx[2,x] = sum(tmp$transitionMutations) |
177 matrx[2,y] = sum(tmp$VRegionMutations) | 191 matrx[2,y] = sum(tmp$VRegionMutations) |
178 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | 192 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) |
193 | |
179 matrx[3,x] = sum(tmp$transversionMutations) | 194 matrx[3,x] = sum(tmp$transversionMutations) |
180 matrx[3,y] = sum(tmp$VRegionMutations) | 195 matrx[3,y] = sum(tmp$VRegionMutations) |
181 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | 196 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) |
197 | |
182 matrx[4,x] = sum(tmp$transitionMutationsAtGC) | 198 matrx[4,x] = sum(tmp$transitionMutationsAtGC) |
183 matrx[4,y] = sum(tmp$totalMutationsAtGC) | 199 matrx[4,y] = sum(tmp$totalMutationsAtGC) |
184 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | 200 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) |
201 | |
185 matrx[5,x] = sum(tmp$totalMutationsAtGC) | 202 matrx[5,x] = sum(tmp$totalMutationsAtGC) |
186 matrx[5,y] = sum(tmp$VRegionMutations) | 203 matrx[5,y] = sum(tmp$VRegionMutations) |
187 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | 204 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) |
188 matrx[6,x] = sum(tmp$nonSilentMutationsFR) | 205 |
189 matrx[6,y] = sum(tmp$silentMutationsFR) | 206 matrx[6,x] = sum(tmp$transitionMutationsAtAT) |
190 matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1) | 207 matrx[6,y] = sum(tmp$totalMutationsAtAT) |
191 matrx[7,x] = sum(tmp$nonSilentMutationsCDR) | 208 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) |
192 matrx[7,y] = sum(tmp$silentMutationsCDR) | 209 |
193 matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1) | 210 matrx[7,x] = sum(tmp$totalMutationsAtAT) |
211 matrx[7,y] = sum(tmp$VRegionMutations) | |
212 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
213 | |
214 matrx[8,x] = sum(tmp$nonSilentMutationsFR) | |
215 matrx[8,y] = sum(tmp$silentMutationsFR) | |
216 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
217 | |
218 matrx[9,x] = sum(tmp$nonSilentMutationsCDR) | |
219 matrx[9,y] = sum(tmp$silentMutationsCDR) | |
220 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
194 | 221 |
195 | 222 |
196 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | 223 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) |
197 row.names(transitionTable) = c("A", "C", "G", "T") | 224 row.names(transitionTable) = c("A", "C", "G", "T") |
198 transitionTable["A","A"] = NA | 225 transitionTable["A","A"] = NA |
237 y = (j * 3) + 2 | 264 y = (j * 3) + 2 |
238 z = (j * 3) + 3 | 265 z = (j * 3) + 3 |
239 matrx[1,x] = sum(tmp$VRegionMutations) | 266 matrx[1,x] = sum(tmp$VRegionMutations) |
240 matrx[1,y] = sum(tmp$VRegionNucleotides) | 267 matrx[1,y] = sum(tmp$VRegionNucleotides) |
241 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | 268 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) |
269 | |
242 matrx[2,x] = sum(tmp$transitionMutations) | 270 matrx[2,x] = sum(tmp$transitionMutations) |
243 matrx[2,y] = sum(tmp$VRegionMutations) | 271 matrx[2,y] = sum(tmp$VRegionMutations) |
244 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | 272 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) |
273 | |
245 matrx[3,x] = sum(tmp$transversionMutations) | 274 matrx[3,x] = sum(tmp$transversionMutations) |
246 matrx[3,y] = sum(tmp$VRegionMutations) | 275 matrx[3,y] = sum(tmp$VRegionMutations) |
247 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | 276 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) |
277 | |
248 matrx[4,x] = sum(tmp$transitionMutationsAtGC) | 278 matrx[4,x] = sum(tmp$transitionMutationsAtGC) |
249 matrx[4,y] = sum(tmp$totalMutationsAtGC) | 279 matrx[4,y] = sum(tmp$totalMutationsAtGC) |
250 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | 280 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) |
281 | |
251 matrx[5,x] = sum(tmp$totalMutationsAtGC) | 282 matrx[5,x] = sum(tmp$totalMutationsAtGC) |
252 matrx[5,y] = sum(tmp$VRegionMutations) | 283 matrx[5,y] = sum(tmp$VRegionMutations) |
253 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | 284 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) |
254 matrx[6,x] = sum(tmp$nonSilentMutationsFR) | 285 |
255 matrx[6,y] = sum(tmp$silentMutationsFR) | 286 matrx[6,x] = sum(tmp$transitionMutationsAtAT) |
256 matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1) | 287 matrx[6,y] = sum(tmp$totalMutationsAtAT) |
257 matrx[7,x] = sum(tmp$nonSilentMutationsCDR) | 288 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) |
258 matrx[7,y] = sum(tmp$silentMutationsCDR) | 289 |
259 matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1) | 290 matrx[7,x] = sum(tmp$totalMutationsAtAT) |
291 matrx[7,y] = sum(tmp$VRegionMutations) | |
292 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | |
293 | |
294 matrx[8,x] = sum(tmp$nonSilentMutationsFR) | |
295 matrx[8,y] = sum(tmp$silentMutationsFR) | |
296 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | |
297 | |
298 matrx[9,x] = sum(tmp$nonSilentMutationsCDR) | |
299 matrx[9,y] = sum(tmp$silentMutationsCDR) | |
300 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | |
260 | 301 |
261 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) | 302 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) |
262 row.names(transitionTable) = c("A", "C", "G", "T") | 303 row.names(transitionTable) = c("A", "C", "G", "T") |
263 transitionTable["A","A"] = NA | 304 transitionTable["A","A"] = NA |
264 transitionTable["C","C"] = NA | 305 transitionTable["C","C"] = NA |
291 cat(length(tmp$Sequence.ID), file="total_n.txt") | 332 cat(length(tmp$Sequence.ID), file="total_n.txt") |
292 | 333 |
293 | 334 |
294 | 335 |
295 result = data.frame(matrx) | 336 result = data.frame(matrx) |
296 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | 337 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") |
297 | 338 |
298 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | 339 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) |
299 | 340 |
300 | 341 |
301 if (!("ggplot2" %in% rownames(installed.packages()))) { | 342 if (!("ggplot2" %in% rownames(installed.packages()))) { |
302 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | 343 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") |
303 } | 344 } |
304 library(ggplot2) | 345 |
305 | 346 |
306 genesForPlot = gsub("[0-9]", "", dat$best_match) | 347 genesForPlot = gsub("[0-9]", "", dat$best_match) |
307 genesForPlot = data.frame(table(genesForPlot)) | 348 genesForPlot = data.frame(table(genesForPlot)) |
308 colnames(genesForPlot) = c("Gene","Freq") | 349 colnames(genesForPlot) = c("Gene","Freq") |
309 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | 350 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) |
358 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | 399 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) |
359 | 400 |
360 p = ggplot(dat, aes(best_match, percentage_mutations)) | 401 p = ggplot(dat, aes(best_match, percentage_mutations)) |
361 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) | 402 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) |
362 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") | 403 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") |
363 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
364 | |
365 | 404 |
366 png(filename="scatter.png") | 405 png(filename="scatter.png") |
367 print(p) | 406 print(p) |
368 dev.off() | 407 dev.off() |
369 | 408 |
370 | 409 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) |
371 | 410 |
372 | 411 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) |
373 | 412 |
374 | 413 |
375 | 414 |
376 | 415 |
377 | 416 |
378 | 417 |
379 | 418 dat$best_match_class = substr(dat$best_match, 0, 2) |
380 | 419 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") |
381 | 420 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) |
382 | 421 |
383 | 422 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) |
384 | 423 |
385 | 424 p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count)) |
386 | 425 p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") |
387 | 426 p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") |
388 | 427 |
389 | 428 png(filename="frequency_ranges.png") |
390 | 429 print(p) |
391 | 430 dev.off() |
392 | 431 |
393 | 432 frequency_bins_data_by_class = frequency_bins_data |
394 | 433 |
395 | 434 write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) |
396 | 435 |
397 | 436 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")]) |
398 | 437 |
399 | 438 write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) |
400 | 439 |
440 | |
441 #frequency_bins_data_by_class | |
442 #frequency_ranges_subclasses.txt | |
443 | |
444 | |
445 | |
446 | |
447 | |
448 | |
449 | |
450 | |
451 | |
452 | |
453 | |
454 | |
455 | |
456 | |
457 | |
458 | |
459 | |
460 | |
461 | |
462 | |
463 | |
464 | |
465 | |
466 | |
467 | |
468 | |
469 |