Mercurial > repos > davidvanzessen > mutation_analysis
comparison mutation_analysis.r @ 114:e7b550d52eb7 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Tue, 09 Aug 2016 07:20:41 -0400 |
| parents | ade5cf6fd2dc |
| children | ede6c4ee5196 |
comparison
equal
deleted
inserted
replaced
| 113:b84477f57318 | 114:e7b550d52eb7 |
|---|---|
| 167 | 167 |
| 168 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) | 168 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) |
| 169 | 169 |
| 170 setwd(outputdir) | 170 setwd(outputdir) |
| 171 | 171 |
| 172 base.order = data.frame(base=c("A", "T", "C", "G"), order=1:4) | |
| 173 | |
| 172 calculate_result = function(i, gene, dat, matrx, f, fname, name){ | 174 calculate_result = function(i, gene, dat, matrx, f, fname, name){ |
| 173 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),] | 175 tmp = dat[grepl(paste("^", gene, ".*", sep=""), dat$best_match),] |
| 174 | 176 |
| 175 j = i - 1 | 177 j = i - 1 |
| 176 x = (j * 3) + 1 | 178 x = (j * 3) + 1 |
| 177 y = (j * 3) + 2 | 179 y = (j * 3) + 2 |
| 178 z = (j * 3) + 3 | 180 z = (j * 3) + 3 |
| 179 | 181 |
| 180 if(nrow(tmp) > 0){ | 182 if(nrow(tmp) > 0){ |
| 181 | 183 |
| 182 if(fname == "sum"){ | 184 if(fname == "sum"){ |
| 183 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 185 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
| 184 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 186 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) |
| 185 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1) | 187 matrx[1,z] = round(f(matrx[1,x] / matrx[1,y]) * 100, digits=1) |
| 186 } else { | 188 } else { |
| 187 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 189 matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
| 188 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 190 matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) |
| 189 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1) | 191 matrx[1,z] = round(f(tmp$VRegionMutations / tmp$VRegionNucleotides) * 100, digits=1) |
| 190 } | 192 } |
| 191 | 193 |
| 192 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) | 194 matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1) |
| 193 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 195 matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
| 194 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | 196 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) |
| 195 | 197 |
| 196 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) | 198 matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1) |
| 197 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 199 matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
| 198 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | 200 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) |
| 199 | 201 |
| 200 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) | 202 matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1) |
| 201 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | 203 matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) |
| 202 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | 204 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) |
| 203 | 205 |
| 204 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) | 206 matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1) |
| 205 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 207 matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
| 206 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | 208 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) |
| 207 | 209 |
| 208 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) | 210 matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1) |
| 209 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | 211 matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) |
| 210 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) | 212 matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) |
| 211 | 213 |
| 212 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) | 214 matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1) |
| 213 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) | 215 matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1) |
| 214 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) | 216 matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) |
| 215 | 217 |
| 216 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) | 218 matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1) |
| 217 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) | 219 matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1) |
| 218 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) | 220 matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) |
| 219 | 221 |
| 220 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) | 222 matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1) |
| 221 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) | 223 matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1) |
| 222 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) | 224 matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) |
| 223 | 225 |
| 224 if(fname == "sum"){ | 226 if(fname == "sum"){ |
| 225 matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) | 227 matrx[10,x] = round(f(rowSums(tmp[,c("FR2.IMGT.Nb.of.nucleotides", "FR3.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) |
| 226 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 228 matrx[10,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) |
| 227 matrx[10,z] = round(matrx[10,x] / matrx[10,y], digits=1) | 229 matrx[10,z] = round(matrx[10,x] / matrx[10,y], digits=1) |
| 228 | 230 |
| 229 matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) | 231 matrx[11,x] = round(f(rowSums(tmp[,c("CDR1.IMGT.Nb.of.nucleotides", "CDR2.IMGT.Nb.of.nucleotides")], na.rm=T)), digits=1) |
| 230 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) | 232 matrx[11,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1) |
| 231 matrx[11,z] = round(matrx[11,x] / matrx[11,y], digits=1) | 233 matrx[11,z] = round(matrx[11,x] / matrx[11,y], digits=1) |
| 232 } | 234 } |
| 233 } | 235 } |
| 234 | 236 |
| 235 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | 237 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) |
| 236 row.names(transitionTable) = c("A", "C", "G", "T") | 238 row.names(transitionTable) = c("A", "C", "G", "T") |
| 237 transitionTable["A","A"] = NA | 239 transitionTable["A","A"] = NA |
| 238 transitionTable["C","C"] = NA | 240 transitionTable["C","C"] = NA |
| 239 transitionTable["G","G"] = NA | 241 transitionTable["G","G"] = NA |
| 240 transitionTable["T","T"] = NA | 242 transitionTable["T","T"] = NA |
| 241 | 243 |
| 242 if(nrow(tmp) > 0){ | 244 if(nrow(tmp) > 0){ |
| 243 for(nt1 in nts){ | 245 for(nt1 in nts){ |
| 244 for(nt2 in nts){ | 246 for(nt2 in nts){ |
| 245 if(nt1 == nt2){ | 247 if(nt1 == nt2){ |
| 246 next | 248 next |
| 247 } | 249 } |
| 257 } else { | 259 } else { |
| 258 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | 260 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) |
| 259 } | 261 } |
| 260 } | 262 } |
| 261 } | 263 } |
| 262 } | 264 transition = transitionTable |
| 263 | 265 transition$id = names(transition) |
| 264 | 266 |
| 265 print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | 267 transition2 = melt(transition, id.vars="id") |
| 266 | 268 |
| 267 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 269 transition2 = merge(transition2, base.order, by.x="id", by.y="base") |
| 268 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | 270 transition2 = merge(transition2, base.order, by.x="variable", by.y="base") |
| 269 | 271 |
| 270 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | 272 transition2[is.na(transition2$value),]$value = 0 |
| 271 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep="")) | 273 |
| 272 | 274 png(filename=paste("transitions_stacked_", name, ".png", sep="")) |
| 273 print(paste(fname, name, nrow(tmp))) | 275 p = ggplot(transition2, aes(factor(reorder(id, order.x)), y=value, fill=factor(reorder(variable, order.y)))) + geom_bar(position="fill", stat="identity") #stacked bar |
| 274 | 276 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") + guides(fill=guide_legend(title=NULL)) |
| 275 matrx | 277 print(p) |
| 278 dev.off() | |
| 279 | |
| 280 png(filename=paste("transitions_heatmap_", name, ".png", sep="")) | |
| 281 p = ggplot(transition2, aes(factor(reorder(id, order.x)), factor(reorder(variable, order.y)))) + geom_tile(aes(fill = value), colour="white") + scale_fill_gradient(low="white", high="steelblue") #heatmap | |
| 282 p = p + xlab("From base") + ylab("To base") + ggtitle("Mutations frequency from base to base") | |
| 283 print(p) | |
| 284 dev.off() | |
| 285 } | |
| 286 | |
| 287 #print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep="")) | |
| 288 | |
| 289 write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 290 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
| 291 | |
| 292 cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep="")) | |
| 293 cat(nrow(tmp), file=paste(name, "_", fname, "_n.txt" ,sep="")) | |
| 294 | |
| 295 #print(paste(fname, name, nrow(tmp))) | |
| 296 | |
| 297 matrx | |
| 276 } | 298 } |
| 277 | 299 |
| 278 nts = c("a", "c", "g", "t") | 300 nts = c("a", "c", "g", "t") |
| 279 zeros=rep(0, 4) | 301 zeros=rep(0, 4) |
| 280 | 302 |
| 320 | 342 |
| 321 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] | 343 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] |
| 322 | 344 |
| 323 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) | 345 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) |
| 324 | 346 |
| 325 | |
| 326 | |
| 327 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
| 328 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
| 329 } | |
| 330 | |
| 331 dat = dat[!grepl("^unmatched", dat$best_match),] | 347 dat = dat[!grepl("^unmatched", dat$best_match),] |
| 332 | 348 |
| 333 #blegh | 349 #blegh |
| 334 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match | 350 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match |
| 335 if(length(genesForPlot) > 0){ | 351 if(length(genesForPlot) > 0){ |
