Mercurial > repos > davidvanzessen > mutation_analysis
comparison gene_identification.py @ 0:74d2bc479bee draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 18 Aug 2014 04:04:37 -0400 |
parents | |
children | 2f4298673519 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:74d2bc479bee |
---|---|
1 import re | |
2 import argparse | |
3 | |
4 | |
5 parser = argparse.ArgumentParser() | |
6 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") | |
7 parser.add_argument("--outdir", help="Output directory, 7 output files will be written here") | |
8 | |
9 args = parser.parse_args() | |
10 | |
11 infile = args.input | |
12 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" | |
13 outdir = args.outdir | |
14 #outfile = "identified.txt" | |
15 | |
16 dic = dict() | |
17 total = 0 | |
18 | |
19 first = True | |
20 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
21 for line in f: | |
22 total += 1 | |
23 if first: | |
24 first = False | |
25 continue | |
26 linesplt = line.split("\t") | |
27 if linesplt[2] == "No results": | |
28 continue | |
29 ID = linesplt[1] | |
30 seq = linesplt[28] | |
31 dic[ID] = seq | |
32 | |
33 #lambda/kappa reference sequence | |
34 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctggtccagggcttcttcccccaggagccactcagtgtgacctggagcgaaag", | |
35 "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcc", | |
36 "cm": "gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc"} | |
37 | |
38 compiledregex = {"ca": [], | |
39 "cg": [], | |
40 "cm": []} | |
41 | |
42 #lambda/kappa reference sequence variable nucleotides | |
43 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} | |
44 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} | |
45 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
46 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} | |
47 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
48 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} | |
49 | |
50 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap | |
51 chunklength = 8 | |
52 | |
53 #create the chunks of the reference sequence with regular expressions for the variable nucleotides | |
54 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2): | |
55 pos = i | |
56 chunk = searchstrings["ca"][i:i+chunklength] | |
57 result = "" | |
58 varsInResult = 0 | |
59 for c in chunk: | |
60 if pos in ca1.keys(): | |
61 varsInResult += 1 | |
62 result += "[" + ca1[pos] + ca2[pos] + "]" | |
63 else: | |
64 result += c | |
65 pos += 1 | |
66 compiledregex["ca"].append((re.compile(result), varsInResult)) | |
67 | |
68 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2): | |
69 pos = i | |
70 chunk = searchstrings["cg"][i:i+chunklength] | |
71 result = "" | |
72 varsInResult = 0 | |
73 for c in chunk: | |
74 if pos in cg1.keys(): | |
75 varsInResult += 1 | |
76 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" | |
77 else: | |
78 result += c | |
79 pos += 1 | |
80 compiledregex["cg"].append((re.compile(result), varsInResult)) | |
81 | |
82 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2): | |
83 compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) | |
84 | |
85 | |
86 | |
87 def removeAndReturnMaxIndex(x): #simplifies a list comprehension | |
88 m = max(x) | |
89 index = x.index(m) | |
90 x[index] = 0 | |
91 return index | |
92 | |
93 | |
94 start_location = dict() | |
95 hits = dict() | |
96 alltotal = 0 | |
97 for key in compiledregex.keys(): #for ca/cg/cm | |
98 regularexpressions = compiledregex[key] #get the compiled regular expressions | |
99 for ID in dic.keys()[0:]: #for every ID | |
100 if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists | |
101 hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} | |
102 currentIDHits = hits[ID] | |
103 seq = dic[ID] | |
104 lastindex = 0 | |
105 start = [0] * len(seq) | |
106 for i, regexp in enumerate(regularexpressions): #for every regular expression | |
107 regex, hasVar = regexp | |
108 matches = regex.finditer(seq[lastindex:]) | |
109 for match in matches: #for every match with the current regex, only uses the first hit | |
110 lastindex += match.start() | |
111 start[lastindex - chunklength / 2 * i] += 1 | |
112 if hasVar: #if the regex has a variable nt in it | |
113 chunkstart = chunklength / 2 * i #where in the reference does this chunk start | |
114 chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end | |
115 if key == "ca": #just calculate the variable nt score for 'ca', cheaper | |
116 currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) | |
117 currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) | |
118 elif key == "cg": #just calculate the variable nt score for 'cg', cheaper | |
119 currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) | |
120 currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) | |
121 currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) | |
122 currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) | |
123 else: #key == "cm" #no variable regions in 'cm' | |
124 pass | |
125 break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped | |
126 else: #only runs if there were no hits | |
127 continue | |
128 #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] | |
129 currentIDHits[key + "_hits"] += 1 | |
130 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1) for x in range(5) if max(start) > 1]) | |
131 #start_location[ID + "_" + key] = str(start.index(max(start))) | |
132 | |
133 | |
134 chunksInCA = len(compiledregex["ca"]) | |
135 chunksInCG = len(compiledregex["cg"]) | |
136 chunksInCM = len(compiledregex["cm"]) | |
137 requiredChunkPercentage = 0.7 | |
138 varsInCA = float(len(ca1.keys()) * 2) | |
139 varsInCG = float(len(cg1.keys()) * 2) + 1 | |
140 varsInCM = 0 | |
141 requiredVarPercentage = 0.7 | |
142 | |
143 ca = 0 | |
144 ca1 = 0 | |
145 ca2 = 0 | |
146 cg = 0 | |
147 cg1 = 0 | |
148 cg2 = 0 | |
149 cg3 = 0 | |
150 cg4 = 0 | |
151 cm = 0 | |
152 try: | |
153 cafile = open(outdir + "/ca.txt", 'w') | |
154 ca1file = open(outdir + "/ca1.txt", 'w') | |
155 ca2file = open(outdir + "/ca2.txt", 'w') | |
156 cgfile = open(outdir + "/cg.txt", 'w') | |
157 cg1file = open(outdir + "/cg1.txt", 'w') | |
158 cg2file = open(outdir + "/cg2.txt", 'w') | |
159 cg3file = open(outdir + "/cg3.txt", 'w') | |
160 cg4file = open(outdir + "/cg4.txt", 'w') | |
161 cmfile = open(outdir + "/cm.txt", 'w') | |
162 unmatchedfile = open(outdir + "/unmatched.txt", 'w') | |
163 cafile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
164 ca1file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
165 ca2file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
166 cgfile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
167 cg1file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
168 cg2file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
169 cg3file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
170 cg4file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
171 cmfile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
172 unmatchedfile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\tbest_match\n") | |
173 for ID in hits.keys(): | |
174 currentIDHits = hits[ID] | |
175 possibleca = float(len(compiledregex["ca"])) | |
176 possiblecg = float(len(compiledregex["cg"])) | |
177 possiblecm = float(len(compiledregex["cm"])) | |
178 cahits = currentIDHits["ca_hits"] | |
179 cghits = currentIDHits["cg_hits"] | |
180 cmhits = currentIDHits["cm_hits"] | |
181 if cahits > cghits and cahits > cmhits: #its a ca gene | |
182 if cahits <= int(chunksInCA * requiredChunkPercentage): | |
183 unmatchedfile.write(ID + "\tNA\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\tca\n") | |
184 continue | |
185 ca += 1 | |
186 ca1hits = currentIDHits["ca1"] | |
187 ca2hits = currentIDHits["ca2"] | |
188 cafile.write(ID + "\tNA\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
189 if ca1hits > ca2hits: | |
190 #print ID, "is ca1 with", (ca1hits / 2), "hits for ca1 and", (ca2hits / 2), "hits for ca2", (int((ca1hits / varsInCA) * 100)), "percent hit" | |
191 if ca1hits <= int(varsInCA * requiredVarPercentage): | |
192 unmatchedfile.write(ID + "\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\tca1\n") | |
193 continue | |
194 ca1 += 1 | |
195 ca1file.write(ID + "\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
196 else: | |
197 #print ID, "is ca2 with", (ca1hits / 2), "hits for ca1 and", (ca2hits / 2), "hits for ca2", (int((ca2hits / varsInCA) * 100)), "percent hit" | |
198 if ca2hits <= int(varsInCA * requiredVarPercentage): | |
199 unmatchedfile.write(ID + "\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\tca1\n") | |
200 continue | |
201 ca2 += 1 | |
202 ca2file.write(ID + "\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
203 elif cghits > cahits and cghits > cmhits: #its a cg gene | |
204 if cghits <= int(chunksInCG * requiredChunkPercentage): | |
205 unmatchedfile.write(ID + "\tNA\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_ca"] + "\tcg\n") | |
206 continue | |
207 cg += 1 | |
208 cg1hits = currentIDHits["cg1"] | |
209 cg2hits = currentIDHits["cg2"] | |
210 cg3hits = currentIDHits["cg3"] | |
211 cg4hits = currentIDHits["cg4"] | |
212 cgfile.write(ID + "\tNA\t" + str(int(cghits / possibleca * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
213 if cg1hits > cg2hits and cg1hits > cg3hits and cg1hits > cg4hits: #cg1 gene | |
214 if cg1hits <= int(varsInCG * requiredVarPercentage): | |
215 unmatchedfile.write(ID + "\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg1\n") | |
216 continue | |
217 cg1 += 1 | |
218 cg1file.write(ID + "\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
219 elif cg2hits > cg1hits and cg2hits > cg3hits and cg2hits > cg4hits: #cg2 gene | |
220 if cg2hits <= int(varsInCG * requiredVarPercentage): | |
221 unmatchedfile.write(ID + "\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg2\n") | |
222 continue | |
223 cg2 += 1 | |
224 cg2file.write(ID + "\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
225 elif cg3hits > cg1hits and cg3hits > cg2hits and cg3hits > cg4hits: #cg3 gene | |
226 if cg3hits <= int(varsInCG * requiredVarPercentage): | |
227 unmatchedfile.write(ID + "\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg3\n") | |
228 continue | |
229 cg3 += 1 | |
230 cg3file.write(ID + "\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
231 else: #cg4 gene | |
232 if cg4hits <= int(varsInCG * requiredVarPercentage): | |
233 unmatchedfile.write(ID + "\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg4\n") | |
234 continue | |
235 cg4 += 1 | |
236 cg4file.write(ID + "\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
237 else: #its a cm gene | |
238 if cmhits <= int(chunksInCM * requiredChunkPercentage): | |
239 unmatchedfile.write(ID + "\tNA\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_ca"] + "\tcm\n") | |
240 continue | |
241 cm += 1 | |
242 cmfile.write(ID + "\tNA\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n") | |
243 finally: | |
244 cafile.close() | |
245 ca1file.close() | |
246 ca2file.close() | |
247 cgfile.close() | |
248 cg1file.close() | |
249 cg2file.close() | |
250 cg3file.close() | |
251 cg4file.close() | |
252 cmfile.close() | |
253 unmatchedfile.close() | |
254 | |
255 | |
256 #print ca,cg,cm,(ca+cg+cm) | |
257 | |
258 | |
259 | |
260 | |
261 | |
262 | |
263 | |
264 | |
265 |