comparison gene_identification.py @ 0:74d2bc479bee draft

Uploaded
author davidvanzessen
date Mon, 18 Aug 2014 04:04:37 -0400
parents
children 2f4298673519
comparison
equal deleted inserted replaced
-1:000000000000 0:74d2bc479bee
1 import re
2 import argparse
3
4
5 parser = argparse.ArgumentParser()
6 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file")
7 parser.add_argument("--outdir", help="Output directory, 7 output files will be written here")
8
9 args = parser.parse_args()
10
11 infile = args.input
12 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt"
13 outdir = args.outdir
14 #outfile = "identified.txt"
15
16 dic = dict()
17 total = 0
18
19 first = True
20 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence
21 for line in f:
22 total += 1
23 if first:
24 first = False
25 continue
26 linesplt = line.split("\t")
27 if linesplt[2] == "No results":
28 continue
29 ID = linesplt[1]
30 seq = linesplt[28]
31 dic[ID] = seq
32
33 #lambda/kappa reference sequence
34 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctggtccagggcttcttcccccaggagccactcagtgtgacctggagcgaaag",
35 "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcc",
36 "cm": "gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc"}
37
38 compiledregex = {"ca": [],
39 "cg": [],
40 "cm": []}
41
42 #lambda/kappa reference sequence variable nucleotides
43 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'}
44 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'}
45 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
46 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'}
47 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'}
48 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'}
49
50 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap
51 chunklength = 8
52
53 #create the chunks of the reference sequence with regular expressions for the variable nucleotides
54 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2):
55 pos = i
56 chunk = searchstrings["ca"][i:i+chunklength]
57 result = ""
58 varsInResult = 0
59 for c in chunk:
60 if pos in ca1.keys():
61 varsInResult += 1
62 result += "[" + ca1[pos] + ca2[pos] + "]"
63 else:
64 result += c
65 pos += 1
66 compiledregex["ca"].append((re.compile(result), varsInResult))
67
68 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2):
69 pos = i
70 chunk = searchstrings["cg"][i:i+chunklength]
71 result = ""
72 varsInResult = 0
73 for c in chunk:
74 if pos in cg1.keys():
75 varsInResult += 1
76 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]"
77 else:
78 result += c
79 pos += 1
80 compiledregex["cg"].append((re.compile(result), varsInResult))
81
82 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2):
83 compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False))
84
85
86
87 def removeAndReturnMaxIndex(x): #simplifies a list comprehension
88 m = max(x)
89 index = x.index(m)
90 x[index] = 0
91 return index
92
93
94 start_location = dict()
95 hits = dict()
96 alltotal = 0
97 for key in compiledregex.keys(): #for ca/cg/cm
98 regularexpressions = compiledregex[key] #get the compiled regular expressions
99 for ID in dic.keys()[0:]: #for every ID
100 if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists
101 hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0}
102 currentIDHits = hits[ID]
103 seq = dic[ID]
104 lastindex = 0
105 start = [0] * len(seq)
106 for i, regexp in enumerate(regularexpressions): #for every regular expression
107 regex, hasVar = regexp
108 matches = regex.finditer(seq[lastindex:])
109 for match in matches: #for every match with the current regex, only uses the first hit
110 lastindex += match.start()
111 start[lastindex - chunklength / 2 * i] += 1
112 if hasVar: #if the regex has a variable nt in it
113 chunkstart = chunklength / 2 * i #where in the reference does this chunk start
114 chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end
115 if key == "ca": #just calculate the variable nt score for 'ca', cheaper
116 currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]])
117 currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]])
118 elif key == "cg": #just calculate the variable nt score for 'cg', cheaper
119 currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]])
120 currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]])
121 currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]])
122 currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]])
123 else: #key == "cm" #no variable regions in 'cm'
124 pass
125 break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped
126 else: #only runs if there were no hits
127 continue
128 #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i]
129 currentIDHits[key + "_hits"] += 1
130 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1) for x in range(5) if max(start) > 1])
131 #start_location[ID + "_" + key] = str(start.index(max(start)))
132
133
134 chunksInCA = len(compiledregex["ca"])
135 chunksInCG = len(compiledregex["cg"])
136 chunksInCM = len(compiledregex["cm"])
137 requiredChunkPercentage = 0.7
138 varsInCA = float(len(ca1.keys()) * 2)
139 varsInCG = float(len(cg1.keys()) * 2) + 1
140 varsInCM = 0
141 requiredVarPercentage = 0.7
142
143 ca = 0
144 ca1 = 0
145 ca2 = 0
146 cg = 0
147 cg1 = 0
148 cg2 = 0
149 cg3 = 0
150 cg4 = 0
151 cm = 0
152 try:
153 cafile = open(outdir + "/ca.txt", 'w')
154 ca1file = open(outdir + "/ca1.txt", 'w')
155 ca2file = open(outdir + "/ca2.txt", 'w')
156 cgfile = open(outdir + "/cg.txt", 'w')
157 cg1file = open(outdir + "/cg1.txt", 'w')
158 cg2file = open(outdir + "/cg2.txt", 'w')
159 cg3file = open(outdir + "/cg3.txt", 'w')
160 cg4file = open(outdir + "/cg4.txt", 'w')
161 cmfile = open(outdir + "/cm.txt", 'w')
162 unmatchedfile = open(outdir + "/unmatched.txt", 'w')
163 cafile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
164 ca1file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
165 ca2file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
166 cgfile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
167 cg1file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
168 cg2file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
169 cg3file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
170 cg4file.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
171 cmfile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n")
172 unmatchedfile.write("ID\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\tbest_match\n")
173 for ID in hits.keys():
174 currentIDHits = hits[ID]
175 possibleca = float(len(compiledregex["ca"]))
176 possiblecg = float(len(compiledregex["cg"]))
177 possiblecm = float(len(compiledregex["cm"]))
178 cahits = currentIDHits["ca_hits"]
179 cghits = currentIDHits["cg_hits"]
180 cmhits = currentIDHits["cm_hits"]
181 if cahits > cghits and cahits > cmhits: #its a ca gene
182 if cahits <= int(chunksInCA * requiredChunkPercentage):
183 unmatchedfile.write(ID + "\tNA\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\tca\n")
184 continue
185 ca += 1
186 ca1hits = currentIDHits["ca1"]
187 ca2hits = currentIDHits["ca2"]
188 cafile.write(ID + "\tNA\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
189 if ca1hits > ca2hits:
190 #print ID, "is ca1 with", (ca1hits / 2), "hits for ca1 and", (ca2hits / 2), "hits for ca2", (int((ca1hits / varsInCA) * 100)), "percent hit"
191 if ca1hits <= int(varsInCA * requiredVarPercentage):
192 unmatchedfile.write(ID + "\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\tca1\n")
193 continue
194 ca1 += 1
195 ca1file.write(ID + "\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
196 else:
197 #print ID, "is ca2 with", (ca1hits / 2), "hits for ca1 and", (ca2hits / 2), "hits for ca2", (int((ca2hits / varsInCA) * 100)), "percent hit"
198 if ca2hits <= int(varsInCA * requiredVarPercentage):
199 unmatchedfile.write(ID + "\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\tca1\n")
200 continue
201 ca2 += 1
202 ca2file.write(ID + "\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n")
203 elif cghits > cahits and cghits > cmhits: #its a cg gene
204 if cghits <= int(chunksInCG * requiredChunkPercentage):
205 unmatchedfile.write(ID + "\tNA\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_ca"] + "\tcg\n")
206 continue
207 cg += 1
208 cg1hits = currentIDHits["cg1"]
209 cg2hits = currentIDHits["cg2"]
210 cg3hits = currentIDHits["cg3"]
211 cg4hits = currentIDHits["cg4"]
212 cgfile.write(ID + "\tNA\t" + str(int(cghits / possibleca * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
213 if cg1hits > cg2hits and cg1hits > cg3hits and cg1hits > cg4hits: #cg1 gene
214 if cg1hits <= int(varsInCG * requiredVarPercentage):
215 unmatchedfile.write(ID + "\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg1\n")
216 continue
217 cg1 += 1
218 cg1file.write(ID + "\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
219 elif cg2hits > cg1hits and cg2hits > cg3hits and cg2hits > cg4hits: #cg2 gene
220 if cg2hits <= int(varsInCG * requiredVarPercentage):
221 unmatchedfile.write(ID + "\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg2\n")
222 continue
223 cg2 += 1
224 cg2file.write(ID + "\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
225 elif cg3hits > cg1hits and cg3hits > cg2hits and cg3hits > cg4hits: #cg3 gene
226 if cg3hits <= int(varsInCG * requiredVarPercentage):
227 unmatchedfile.write(ID + "\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg3\n")
228 continue
229 cg3 += 1
230 cg3file.write(ID + "\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
231 else: #cg4 gene
232 if cg4hits <= int(varsInCG * requiredVarPercentage):
233 unmatchedfile.write(ID + "\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\tcg4\n")
234 continue
235 cg4 += 1
236 cg4file.write(ID + "\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n")
237 else: #its a cm gene
238 if cmhits <= int(chunksInCM * requiredChunkPercentage):
239 unmatchedfile.write(ID + "\tNA\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_ca"] + "\tcm\n")
240 continue
241 cm += 1
242 cmfile.write(ID + "\tNA\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cm"] + "\n")
243 finally:
244 cafile.close()
245 ca1file.close()
246 ca2file.close()
247 cgfile.close()
248 cg1file.close()
249 cg2file.close()
250 cg3file.close()
251 cg4file.close()
252 cmfile.close()
253 unmatchedfile.close()
254
255
256 #print ca,cg,cm,(ca+cg+cm)
257
258
259
260
261
262
263
264
265