7
|
1 import pandas as pd
|
|
2 try:
|
|
3 pd.options.mode.chained_assignment = None # default='warn'
|
|
4 except:
|
|
5 pass
|
|
6 import re
|
|
7 import argparse
|
|
8 import os
|
|
9
|
|
10 def stop_err( msg, ret=1 ):
|
|
11 sys.stderr.write( msg )
|
|
12 sys.exit( ret )
|
|
13
|
|
14 #docs.python.org/dev/library/argparse.html
|
|
15 parser = argparse.ArgumentParser()
|
|
16 parser.add_argument("--summ", help="The 1_Summary file from the imgt output")
|
|
17 parser.add_argument("--aa", help="The 5_AA-Sequence file from the imgt output")
|
|
18 parser.add_argument("--junction", help="The 6_Junction file from the imgt output")
|
|
19 parser.add_argument("--output", help="Output file")
|
|
20
|
|
21 args = parser.parse_args()
|
|
22
|
|
23 old_summary_columns = [u'Sequence ID', u'JUNCTION frame', u'V-GENE and allele', u'D-GENE and allele', u'J-GENE and allele', u'CDR1-IMGT length', u'CDR2-IMGT length', u'CDR3-IMGT length', u'Orientation']
|
|
24 old_sequence_columns = [u'CDR1-IMGT', u'CDR2-IMGT', u'CDR3-IMGT']
|
|
25 old_junction_columns = [u'JUNCTION']
|
|
26
|
|
27 added_summary_columns = [u'Functionality', u'V-REGION identity %', u'V-REGION identity nt', u'D-REGION reading frame', u'AA JUNCTION', u'Functionality comment', u'Sequence']
|
|
28 added_sequence_columns = [u'FR1-IMGT', u'FR2-IMGT', u'FR3-IMGT', u'CDR3-IMGT', u'JUNCTION', u'J-REGION', u'FR4-IMGT']
|
|
29 added_junction_columns = [u"P3'V-nt nb", u'N1-REGION-nt nb', u"P5'D-nt nb", u"P3'D-nt nb", u'N2-REGION-nt nb', u"P5'J-nt nb", u"3'V-REGION trimmed-nt nb", u"5'D-REGION trimmed-nt nb", u"3'D-REGION trimmed-nt nb", u"5'J-REGION trimmed-nt nb"]
|
|
30
|
|
31 outFile = args.output
|
|
32
|
|
33 #fSummary = pd.read_csv(triplets[0][0], sep="\t", low_memory=False)
|
|
34 fSummary = pd.read_csv(args.summ, sep="\t", dtype=object)
|
|
35 #fSequence = pd.read_csv(triplets[0][1], sep="\t", low_memory=False)
|
|
36 fSequence = pd.read_csv(args.aa, sep="\t", dtype=object)
|
|
37 #fJunction = pd.read_csv(triplets[0][2], sep="\t", low_memory=False)
|
|
38 fJunction = pd.read_csv(args.junction, sep="\t", dtype=object)
|
|
39 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]]
|
|
40
|
|
41 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"]
|
|
42 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"]
|
|
43
|
|
44 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"]
|
|
45 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"]
|
|
46
|
|
47 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"]
|
|
48 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"]
|
|
49
|
|
50 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"]
|
|
51 tmp["CDR3 Length DNA"] = '1'
|
|
52 tmp["Strand"] = fSummary["Orientation"]
|
|
53 tmp["CDR3 Found How"] = 'a'
|
|
54
|
|
55 for col in added_summary_columns:
|
|
56 tmp[col] = fSummary[col]
|
|
57
|
|
58 for col in added_sequence_columns:
|
|
59 tmp[col] = fSequence[col]
|
|
60
|
|
61 for col in added_junction_columns:
|
|
62 tmp[col] = fJunction[col]
|
|
63
|
|
64 outFrame = tmp
|
|
65
|
|
66 outFrame.columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Functionality', 'V-REGION identity %', 'V-REGION identity nt', 'D-REGION reading frame', 'AA JUNCTION', 'Functionality comment', 'Sequence', 'FR1-IMGT', 'FR2-IMGT', 'FR3-IMGT', 'CDR3-IMGT', 'JUNCTION', 'J-REGION', 'FR4-IMGT', 'P3V-nt nb', 'N1-REGION-nt nb', 'P5D-nt nb', 'P3D-nt nb', 'N2-REGION-nt nb', 'P5J-nt nb', '3V-REGION trimmed-nt nb', '5D-REGION trimmed-nt nb', '3D-REGION trimmed-nt nb', '5J-REGION trimmed-nt nb']
|
|
67
|
|
68 """
|
|
69 IGHV[0-9]-[0-9ab]+-?[0-9]?D?
|
|
70 TRBV[0-9]{1,2}-?[0-9]?-?[123]?
|
|
71 IGKV[0-3]D?-[0-9]{1,2}
|
|
72 IGLV[0-9]-[0-9]{1,2}
|
|
73 TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?
|
|
74 TRGV[234589]
|
|
75 TRDV[1-3]
|
|
76
|
|
77 IGHD[0-9]-[0-9ab]+
|
|
78 TRBD[12]
|
|
79 TRDD[1-3]
|
|
80
|
|
81 IGHJ[1-6]
|
|
82 TRBJ[12]-[1-7]
|
|
83 IGKJ[1-5]
|
|
84 IGLJ[12367]
|
|
85 TRAJ[0-9]{1,2}
|
|
86 TRGJP?[12]
|
|
87 TRDJ[1-4]
|
|
88 """
|
|
89
|
|
90 vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?)",
|
|
91 r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)",
|
|
92 r"(IGKV[0-3]D?-[0-9]{1,2})",
|
|
93 r"(IGLV[0-9]-[0-9]{1,2})",
|
|
94 r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)",
|
|
95 r"(TRGV[234589])",
|
|
96 r"(TRDV[1-3])"]
|
|
97
|
|
98 dPattern = [r"(IGHD[0-9]-[0-9ab]+)",
|
|
99 r"(TRBD[12])",
|
|
100 r"(TRDD[1-3])"]
|
|
101
|
|
102 jPattern = [r"(IGHJ[1-6])",
|
|
103 r"(TRBJ[12]-[1-7])",
|
|
104 r"(IGKJ[1-5])",
|
|
105 r"(IGLJ[12367])",
|
|
106 r"(TRAJ[0-9]{1,2})",
|
|
107 r"(TRGJP?[12])",
|
|
108 r"(TRDJ[1-4])"]
|
|
109
|
|
110 vPattern = re.compile(r"|".join(vPattern))
|
|
111
|
|
112 dPattern = re.compile(r"|".join(dPattern))
|
|
113
|
|
114 jPattern = re.compile(r"|".join(jPattern))
|
|
115
|
|
116
|
|
117 def filterGenes(s, pattern):
|
|
118 if type(s) is not str:
|
|
119 return "NA"
|
|
120 res = pattern.search(s)
|
|
121 if res:
|
|
122 return res.group(0)
|
|
123 return "NA"
|
|
124
|
|
125
|
|
126
|
|
127 outFrame["Top V Gene"] = outFrame["Top V Gene"].apply(lambda x: filterGenes(x, vPattern))
|
|
128 outFrame["Top D Gene"] = outFrame["Top D Gene"].apply(lambda x: filterGenes(x, dPattern))
|
|
129 outFrame["Top J Gene"] = outFrame["Top J Gene"].apply(lambda x: filterGenes(x, jPattern))
|
|
130
|
|
131 print outFrame
|
|
132
|
|
133 tmp = outFrame["VDJ Frame"]
|
|
134 tmp = tmp.replace("in-frame", "In-frame")
|
|
135 tmp = tmp.replace("null", "Out-of-frame")
|
|
136 tmp = tmp.replace("out-of-frame", "Out-of-frame")
|
|
137 outFrame["VDJ Frame"] = tmp
|
|
138 outFrame["CDR3 Length DNA"] = outFrame["CDR3 Seq DNA"].map(str).map(len)
|
|
139 safeLength = lambda x: len(x) if type(x) == str else 0
|
|
140 outFrame = outFrame[(outFrame["CDR3 Seq DNA"].map(safeLength) > 0) & (outFrame["Top V Gene"] != "NA") & (outFrame["Top J Gene"] != "NA")] #filter out weird rows?
|
|
141 #outFrame = outFrame[(outFrame["CDR3 Seq DNA"].map(safeLength) > 0) & (outFrame["Top V Gene"] != "NA") & (outFrame["Top D Gene"] != "NA") & (outFrame["Top J Gene"] != "NA")] #filter out weird rows?
|
|
142 outFrame.to_csv(outFile, sep="\t", index=False, index_label="index")
|