diff RScript_b.r @ 1:778a9d130904 draft

Uploaded
author davidvanzessen
date Thu, 04 Sep 2014 07:46:23 -0400
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/RScript_b.r	Thu Sep 04 07:46:23 2014 -0400
@@ -0,0 +1,462 @@
+#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
+
+args <- commandArgs(trailingOnly = TRUE)
+
+inFile = args[1]
+outFile = args[2]
+outDir = args[3]
+clonalType = args[4]
+species = args[5]
+locus = args[6]
+selection = args[7]
+
+
+
+if (!("gridExtra" %in% rownames(installed.packages()))) {
+	install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") 
+}
+library(gridExtra)
+if (!("ggplot2" %in% rownames(installed.packages()))) {
+	install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
+}
+library(ggplot2)
+if (!("plyr" %in% rownames(installed.packages()))) {
+	install.packages("plyr", repos="http://cran.xl-mirror.nl/") 
+}			
+library(plyr)
+
+if (!("data.table" %in% rownames(installed.packages()))) {
+	install.packages("data.table", repos="http://cran.xl-mirror.nl/") 
+}
+library(data.table)
+
+if (!("reshape2" %in% rownames(installed.packages()))) {
+	install.packages("reshape2", repos="http://cran.xl-mirror.nl/") 
+}
+library(reshape2)
+
+
+test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="")
+
+test = test[test$Sample != "",]
+
+test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene)
+test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene)
+test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene)
+
+#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":"))
+test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":"))
+
+PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ]
+if("Functionality" %in% colnames(test)) {
+	PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ]
+}
+
+NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ]
+
+#PRODF = PROD[ -1]
+
+PRODF = PROD
+
+#PRODF = unique(PRODF)
+
+
+
+if(selection == "unique"){
+	PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ]
+}
+
+PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")])
+PRODFV$Length = as.numeric(PRODFV$Length)
+Total = 0
+Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length)))
+PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
+PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total))
+
+PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")])
+PRODFD$Length = as.numeric(PRODFD$Length)
+Total = 0
+Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length)))
+PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
+PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total))
+
+PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")])
+PRODFJ$Length = as.numeric(PRODFJ$Length)
+Total = 0
+Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length)))
+PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE)
+PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total))
+
+V = c("v.name\tchr.orderV")
+D = c("v.name\tchr.orderD")
+J = c("v.name\tchr.orderJ")
+
+if(species == "human"){
+	if(locus == "igh"){		
+		V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54")
+		D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18")
+		J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6")
+	} else if (locus == "igk"){
+		V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38")
+		D = c("v.name\tchr.orderD\n")
+		J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5")
+	} else if (locus == "igl"){
+		V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33")
+		D = c("v.name\tchr.orderD\n")
+		J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5")
+	}
+} else if (species == "mouse"){
+	if(locus == "igh"){
+		cat("mouse igh not yet implemented")
+	} else if (locus == "igk"){
+		cat("mouse igk not yet implemented")
+	} else if (locus == "igl"){
+		cat("mouse igl not yet implemented")
+	}
+}
+
+useD = TRUE
+if(species == "human" && (locus == "igk" || locus == "igl")){
+	useD = FALSE
+}
+
+tcV = textConnection(V)
+Vchain = read.table(tcV, sep="\t", header=TRUE)
+PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE)
+close(tcV)
+
+tcD = textConnection(D)
+Dchain = read.table(tcD, sep="\t", header=TRUE)
+PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE)
+close(tcD)
+
+tcJ = textConnection(J)
+Jchain = read.table(tcJ, sep="\t", header=TRUE)
+PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE)
+close(tcJ)
+
+setwd(outDir)
+
+write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+pV = ggplot(PRODFV)
+pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
+pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage")
+write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+png("VPlot.png",width = 1280, height = 720)
+pV
+dev.off();
+
+if(useD){
+	pD = ggplot(PRODFD)
+	pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
+	pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage")
+	write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+	png("DPlot.png",width = 800, height = 600)
+	print(pD)
+	dev.off();
+}
+
+pJ = ggplot(PRODFJ)
+pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1))
+pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage")
+write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+png("JPlot.png",width = 800, height = 600)
+pJ
+dev.off();
+
+VGenes = PRODF[,c("Sample", "Top.V.Gene")]
+VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene)
+VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")])
+TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample])
+VGenes = merge(VGenes, TotalPerSample, by="Sample")
+VGenes$Frequency = VGenes$Count * 100 / VGenes$total
+VPlot = ggplot(VGenes)
+VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+				ggtitle("Distribution of V gene families") + 
+				ylab("Percentage of sequences")
+png("VFPlot.png")
+VPlot
+dev.off();
+write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+if(useD){
+	DGenes = PRODF[,c("Sample", "Top.D.Gene")]
+	DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene)
+	DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")])
+	TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample])
+	DGenes = merge(DGenes, TotalPerSample, by="Sample")
+	DGenes$Frequency = DGenes$Count * 100 / DGenes$total
+	DPlot = ggplot(DGenes)
+	DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+					ggtitle("Distribution of D gene families") + 
+					ylab("Percentage of sequences")
+	png("DFPlot.png")
+	print(DPlot)
+	dev.off();
+	write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+}
+
+JGenes = PRODF[,c("Sample", "Top.J.Gene")]
+JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene)
+JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")])
+TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample])
+JGenes = merge(JGenes, TotalPerSample, by="Sample")
+JGenes$Frequency = JGenes$Count * 100 / JGenes$total
+JPlot = ggplot(JGenes)
+JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+				ggtitle("Distribution of J gene families") + 
+				ylab("Percentage of sequences")
+png("JFPlot.png")
+JPlot
+dev.off();
+write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")])
+TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample])
+CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample")
+CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total
+CDR3LengthPlot = ggplot(CDR3Length)
+CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+				ggtitle("Length distribution of CDR3") + 
+				xlab("CDR3 Length") + 
+				ylab("Percentage of sequences")
+png("CDR3LengthPlot.png",width = 1280, height = 720)
+CDR3LengthPlot
+dev.off()
+write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+revVchain = Vchain
+revDchain = Dchain
+revVchain$chr.orderV = rev(revVchain$chr.orderV)
+revDchain$chr.orderD = rev(revDchain$chr.orderD)
+
+if(useD){
+	plotVD <- function(dat){
+		if(length(dat[,1]) == 0){
+			return()
+		}
+		img = ggplot() + 
+		geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
+		theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+		scale_fill_gradient(low="gold", high="blue", na.value="white") + 
+		ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
+		xlab("D genes") + 
+		ylab("V Genes")
+		
+		png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name)))
+		print(img)
+		dev.off()
+		write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+	}
+
+	VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")])
+
+	VandDCount$l = log(VandDCount$Length)
+	maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")])
+	VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T)
+	VandDCount$relLength = VandDCount$l / VandDCount$max
+
+	cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample))
+
+	completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE)
+	completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
+	completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
+	VDList = split(completeVD, f=completeVD[,"Sample"])
+
+	lapply(VDList, FUN=plotVD)
+}
+
+plotVJ <- function(dat){
+	if(length(dat[,1]) == 0){
+		return()
+	}
+	cat(paste(unique(dat[3])[1,1]))
+	img = ggplot() + 
+	geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + 
+	theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+	scale_fill_gradient(low="gold", high="blue", na.value="white") + 
+	ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
+	xlab("J genes") + 
+	ylab("V Genes")
+	
+	png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name)))
+	print(img)
+	dev.off()
+	write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+}
+
+VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")])
+
+VandJCount$l = log(VandJCount$Length)
+maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")])
+VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T)
+VandJCount$relLength = VandJCount$l / VandJCount$max
+
+cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
+
+completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE)
+completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE)
+completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
+VJList = split(completeVJ, f=completeVJ[,"Sample"])
+lapply(VJList, FUN=plotVJ)
+
+if(useD){
+	plotDJ <- function(dat){
+		if(length(dat[,1]) == 0){
+			return()
+		}
+		img = ggplot() + 
+		geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + 
+		theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 
+		scale_fill_gradient(low="gold", high="blue", na.value="white") + 
+		ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + 
+		xlab("J genes") + 
+		ylab("D Genes")
+		
+		png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name)))
+		print(img)
+		dev.off()
+		write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+	}
+
+
+	DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")])
+
+	DandJCount$l = log(DandJCount$Length)
+	maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")])
+	DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T)
+	DandJCount$relLength = DandJCount$l / DandJCount$max
+
+	cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample))
+
+	completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE)
+	completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE)
+	completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE)
+	DJList = split(completeDJ, f=completeDJ[,"Sample"])
+	lapply(DJList, FUN=plotDJ)
+}
+
+sampleFile <- file("samples.txt")
+un = unique(test$Sample)
+un = paste(un, sep="\n")
+writeLines(un, sampleFile)
+close(sampleFile)
+
+
+if("Replicate" %in% colnames(test))
+{
+	clonalityFrame = PROD
+	clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":"))
+	clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ]
+	write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T)
+
+	ClonalitySampleReplicatePrint <- function(dat){
+	    write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
+	}
+
+    clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")])
+    #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint)
+
+    ClonalitySamplePrint <- function(dat){
+	    write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T)
+	}
+
+    clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"])
+    #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint)
+
+	clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")])
+	clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")])
+	clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count
+	clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")])
+	clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample")
+
+	ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15')
+	tcct = textConnection(ct)
+	CT  = read.table(tcct, sep="\t", header=TRUE)
+	close(tcct)
+	clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T)
+	clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight
+
+	ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")])
+	ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")])
+	clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads)
+	ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads
+
+	ReplicatePrint <- function(dat){
+		write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+	}
+
+	ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
+	lapply(ReplicateSplit, FUN=ReplicatePrint)
+
+	ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")])
+	clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T)
+
+
+	ReplicateSumPrint <- function(dat){
+		write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+	}
+
+	ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"])
+	lapply(ReplicateSumSplit, FUN=ReplicateSumPrint)
+
+	clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")])
+	clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T)
+	clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow
+	clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2)
+	clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1)
+
+	ClonalityScorePrint <- function(dat){
+		write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+	}
+
+	clonalityScore = clonalFreqCount[c("Sample", "Result")]
+	clonalityScore = unique(clonalityScore)
+
+	clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"])
+	lapply(clonalityScoreSplit, FUN=ClonalityScorePrint)
+
+	clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")]
+
+
+
+	ClonalityOverviewPrint <- function(dat){
+		write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F)
+	}
+
+	clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample)
+	lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint)
+}
+
+if("Functionality" %in% colnames(test))
+{
+	newData = data.frame(data.table(PROD)[,list(unique=.N, 
+				VH.DEL=mean(X3V.REGION.trimmed.nt.nb),
+				P1=mean(P3V.nt.nb),
+				N1=mean(N1.REGION.nt.nb),
+				P2=mean(P5D.nt.nb),
+				DEL.DH=mean(X5D.REGION.trimmed.nt.nb),
+				DH.DEL=mean(X3D.REGION.trimmed.nt.nb),
+				P3=mean(P3D.nt.nb),
+				N2=mean(N2.REGION.nt.nb),
+				P4=mean(P5J.nt.nb),
+				DEL.JH=mean(X5J.REGION.trimmed.nt.nb),
+				Total.Del=(	mean(X3V.REGION.trimmed.nt.nb) + 
+							mean(X5D.REGION.trimmed.nt.nb) + 
+							mean(X3D.REGION.trimmed.nt.nb) +
+							mean(X5J.REGION.trimmed.nt.nb)),
+							
+				Total.N=(	mean(N1.REGION.nt.nb) +
+							mean(N2.REGION.nt.nb)),
+							
+				Total.P=(	mean(P3V.nt.nb) +
+							mean(P5D.nt.nb) +
+							mean(P3D.nt.nb) +
+							mean(P5J.nt.nb))),
+				by=c("Sample")])
+	write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F)
+}