Mercurial > repos > davidvanzessen > complete_immunerepertoire_igg
comparison RScript_b.r @ 1:778a9d130904 draft
Uploaded
author | davidvanzessen |
---|---|
date | Thu, 04 Sep 2014 07:46:23 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:7d97fa9a0423 | 1:778a9d130904 |
---|---|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 inFile = args[1] | |
6 outFile = args[2] | |
7 outDir = args[3] | |
8 clonalType = args[4] | |
9 species = args[5] | |
10 locus = args[6] | |
11 selection = args[7] | |
12 | |
13 | |
14 | |
15 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
16 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
17 } | |
18 library(gridExtra) | |
19 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
20 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
21 } | |
22 library(ggplot2) | |
23 if (!("plyr" %in% rownames(installed.packages()))) { | |
24 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
25 } | |
26 library(plyr) | |
27 | |
28 if (!("data.table" %in% rownames(installed.packages()))) { | |
29 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
30 } | |
31 library(data.table) | |
32 | |
33 if (!("reshape2" %in% rownames(installed.packages()))) { | |
34 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") | |
35 } | |
36 library(reshape2) | |
37 | |
38 | |
39 test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") | |
40 | |
41 test = test[test$Sample != "",] | |
42 | |
43 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | |
44 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | |
45 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | |
46 | |
47 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) | |
48 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) | |
49 | |
50 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] | |
51 if("Functionality" %in% colnames(test)) { | |
52 PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] | |
53 } | |
54 | |
55 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] | |
56 | |
57 #PRODF = PROD[ -1] | |
58 | |
59 PRODF = PROD | |
60 | |
61 #PRODF = unique(PRODF) | |
62 | |
63 | |
64 | |
65 if(selection == "unique"){ | |
66 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] | |
67 } | |
68 | |
69 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) | |
70 PRODFV$Length = as.numeric(PRODFV$Length) | |
71 Total = 0 | |
72 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
73 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
74 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
75 | |
76 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) | |
77 PRODFD$Length = as.numeric(PRODFD$Length) | |
78 Total = 0 | |
79 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
80 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
81 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
82 | |
83 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) | |
84 PRODFJ$Length = as.numeric(PRODFJ$Length) | |
85 Total = 0 | |
86 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
87 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
88 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
89 | |
90 V = c("v.name\tchr.orderV") | |
91 D = c("v.name\tchr.orderD") | |
92 J = c("v.name\tchr.orderJ") | |
93 | |
94 if(species == "human"){ | |
95 if(locus == "igh"){ | |
96 V = c("v.name\tchr.orderV\nIGHV3-74\t1\nIGHV3-73\t2\nIGHV3-72\t3\nIGHV2-70\t4\nIGHV1-69D\t5\nIGHV1-69-2\t6\nIGHV2-70D\t7\nIGHV1-69\t8\nIGHV3-66\t9\nIGHV3-64\t10\nIGHV4-61\t11\nIGHV4-59\t12\nIGHV1-58\t13\nIGHV3-53\t14\nIGHV5-51\t15\nIGHV3-49\t16\nIGHV3-48\t17\nIGHV1-46\t18\nIGHV1-45\t19\nIGHV3-43\t20\nIGHV4-39\t21\nIGHV3-43D\t22\nIGHV4-38-2\t23\nIGHV4-34\t24\nIGHV3-33\t25\nIGHV4-31\t26\nIGHV3-30-5\t27\nIGHV4-30-4\t28\nIGHV3-30-3\t29\nIGHV4-30-2\t30\nIGHV4-30-1\t31\nIGHV3-30\t32\nIGHV4-28\t33\nIGHV2-26\t34\nIGHV1-24\t35\nIGHV3-23D\t36\nIGHV3-23\t37\nIGHV3-21\t38\nIGHV3-20\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV5-10-1\t44\nIGHV3-9\t45\nIGHV1-8\t46\nIGHV3-64D\t47\nIGHV3-7\t48\nIGHV2-5\t49\nIGHV7-4-1\t50\nIGHV4-4\t51\nIGHV1-3\t52\nIGHV1-2\t53\nIGHV6-1\t54") | |
97 D = c("v.name\tchr.orderD\nIGHD1-7\t1\nIGHD2-8\t2\nIGHD3-9\t3\nIGHD3-10\t4\nIGHD5-12\t5\nIGHD6-13\t6\nIGHD2-15\t7\nIGHD3-16\t8\nIGHD4-17\t9\nIGHD5-18\t10\nIGHD6-19\t11\nIGHD1-20\t12\nIGHD2-21\t13\nIGHD3-22\t14\nIGHD5-24\t15\nIGHD6-25\t16\nIGHD1-26\t17\nIGHD7-27\t18") | |
98 J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") | |
99 } else if (locus == "igk"){ | |
100 V = c("v.name\tchr.orderV\nIGKV3D-7\t1\nIGKV1D-8\t2\nIGKV1D-43\t3\nIGKV3D-11\t4\nIGKV1D-12\t5\nIGKV1D-13\t6\nIGKV3D-15\t7\nIGKV1D-16\t8\nIGKV1D-17\t9\nIGKV3D-20\t10\nIGKV2D-26\t11\nIGKV2D-28\t12\nIGKV2D-29\t13\nIGKV2D-30\t14\nIGKV1D-33\t15\nIGKV1D-39\t16\nIGKV2D-40\t17\nIGKV2-40\t18\nIGKV1-39\t19\nIGKV1-33\t20\nIGKV2-30\t21\nIGKV2-29\t22\nIGKV2-28\t23\nIGKV1-27\t24\nIGKV2-24\t25\nIGKV3-20\t26\nIGKV1-17\t27\nIGKV1-16\t28\nIGKV3-15\t29\nIGKV1-13\t30\nIGKV1-12\t31\nIGKV3-11\t32\nIGKV1-9\t33\nIGKV1-8\t34\nIGKV1-6\t35\nIGKV1-5\t36\nIGKV5-2\t37\nIGKV4-1\t38") | |
101 D = c("v.name\tchr.orderD\n") | |
102 J = c("v.name\tchr.orderJ\nIGKJ1\t1\nIGKJ2\t2\nIGKJ3\t3\nIGKJ4\t4\nIGKJ5\t5") | |
103 } else if (locus == "igl"){ | |
104 V = c("v.name\tchr.orderV\nIGLV4-69\t1\nIGLV8-61\t2\nIGLV4-60\t3\nIGLV6-57\t4\nIGLV5-52\t5\nIGLV1-51\t6\nIGLV9-49\t7\nIGLV1-47\t8\nIGLV7-46\t9\nIGLV5-45\t10\nIGLV1-44\t11\nIGLV7-43\t12\nIGLV1-41\t13\nIGLV1-40\t14\nIGLV5-39\t15\nIGLV5-37\t16\nIGLV1-36\t17\nIGLV3-27\t18\nIGLV3-25\t19\nIGLV2-23\t20\nIGLV3-22\t21\nIGLV3-21\t22\nIGLV3-19\t23\nIGLV2-18\t24\nIGLV3-16\t25\nIGLV2-14\t26\nIGLV3-12\t27\nIGLV2-11\t28\nIGLV3-10\t29\nIGLV3-9\t30\nIGLV2-8\t31\nIGLV4-3\t32\nIGLV3-1\t33") | |
105 D = c("v.name\tchr.orderD\n") | |
106 J = c("v.name\tchr.orderJ\nIGLJ1\t1\nIGLJ2\t2\nIGLJ3\t3\nIGLJ6\t4\nIGLJ7\t5") | |
107 } | |
108 } else if (species == "mouse"){ | |
109 if(locus == "igh"){ | |
110 cat("mouse igh not yet implemented") | |
111 } else if (locus == "igk"){ | |
112 cat("mouse igk not yet implemented") | |
113 } else if (locus == "igl"){ | |
114 cat("mouse igl not yet implemented") | |
115 } | |
116 } | |
117 | |
118 useD = TRUE | |
119 if(species == "human" && (locus == "igk" || locus == "igl")){ | |
120 useD = FALSE | |
121 } | |
122 | |
123 tcV = textConnection(V) | |
124 Vchain = read.table(tcV, sep="\t", header=TRUE) | |
125 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
126 close(tcV) | |
127 | |
128 tcD = textConnection(D) | |
129 Dchain = read.table(tcD, sep="\t", header=TRUE) | |
130 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
131 close(tcD) | |
132 | |
133 tcJ = textConnection(J) | |
134 Jchain = read.table(tcJ, sep="\t", header=TRUE) | |
135 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
136 close(tcJ) | |
137 | |
138 setwd(outDir) | |
139 | |
140 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) | |
141 | |
142 pV = ggplot(PRODFV) | |
143 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
144 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | |
145 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
146 | |
147 png("VPlot.png",width = 1280, height = 720) | |
148 pV | |
149 dev.off(); | |
150 | |
151 if(useD){ | |
152 pD = ggplot(PRODFD) | |
153 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
154 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | |
155 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
156 | |
157 png("DPlot.png",width = 800, height = 600) | |
158 print(pD) | |
159 dev.off(); | |
160 } | |
161 | |
162 pJ = ggplot(PRODFJ) | |
163 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
164 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
165 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
166 | |
167 png("JPlot.png",width = 800, height = 600) | |
168 pJ | |
169 dev.off(); | |
170 | |
171 VGenes = PRODF[,c("Sample", "Top.V.Gene")] | |
172 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) | |
173 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) | |
174 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
175 VGenes = merge(VGenes, TotalPerSample, by="Sample") | |
176 VGenes$Frequency = VGenes$Count * 100 / VGenes$total | |
177 VPlot = ggplot(VGenes) | |
178 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
179 ggtitle("Distribution of V gene families") + | |
180 ylab("Percentage of sequences") | |
181 png("VFPlot.png") | |
182 VPlot | |
183 dev.off(); | |
184 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
185 | |
186 if(useD){ | |
187 DGenes = PRODF[,c("Sample", "Top.D.Gene")] | |
188 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) | |
189 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) | |
190 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
191 DGenes = merge(DGenes, TotalPerSample, by="Sample") | |
192 DGenes$Frequency = DGenes$Count * 100 / DGenes$total | |
193 DPlot = ggplot(DGenes) | |
194 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
195 ggtitle("Distribution of D gene families") + | |
196 ylab("Percentage of sequences") | |
197 png("DFPlot.png") | |
198 print(DPlot) | |
199 dev.off(); | |
200 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
201 } | |
202 | |
203 JGenes = PRODF[,c("Sample", "Top.J.Gene")] | |
204 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) | |
205 JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) | |
206 TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
207 JGenes = merge(JGenes, TotalPerSample, by="Sample") | |
208 JGenes$Frequency = JGenes$Count * 100 / JGenes$total | |
209 JPlot = ggplot(JGenes) | |
210 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
211 ggtitle("Distribution of J gene families") + | |
212 ylab("Percentage of sequences") | |
213 png("JFPlot.png") | |
214 JPlot | |
215 dev.off(); | |
216 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
217 | |
218 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) | |
219 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) | |
220 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") | |
221 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total | |
222 CDR3LengthPlot = ggplot(CDR3Length) | |
223 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
224 ggtitle("Length distribution of CDR3") + | |
225 xlab("CDR3 Length") + | |
226 ylab("Percentage of sequences") | |
227 png("CDR3LengthPlot.png",width = 1280, height = 720) | |
228 CDR3LengthPlot | |
229 dev.off() | |
230 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) | |
231 | |
232 revVchain = Vchain | |
233 revDchain = Dchain | |
234 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
235 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
236 | |
237 if(useD){ | |
238 plotVD <- function(dat){ | |
239 if(length(dat[,1]) == 0){ | |
240 return() | |
241 } | |
242 img = ggplot() + | |
243 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
244 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
245 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
246 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
247 xlab("D genes") + | |
248 ylab("V Genes") | |
249 | |
250 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
251 print(img) | |
252 dev.off() | |
253 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
254 } | |
255 | |
256 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
257 | |
258 VandDCount$l = log(VandDCount$Length) | |
259 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
260 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
261 VandDCount$relLength = VandDCount$l / VandDCount$max | |
262 | |
263 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | |
264 | |
265 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | |
266 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
267 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
268 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
269 | |
270 lapply(VDList, FUN=plotVD) | |
271 } | |
272 | |
273 plotVJ <- function(dat){ | |
274 if(length(dat[,1]) == 0){ | |
275 return() | |
276 } | |
277 cat(paste(unique(dat[3])[1,1])) | |
278 img = ggplot() + | |
279 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
280 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
281 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
282 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
283 xlab("J genes") + | |
284 ylab("V Genes") | |
285 | |
286 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
287 print(img) | |
288 dev.off() | |
289 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
290 } | |
291 | |
292 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
293 | |
294 VandJCount$l = log(VandJCount$Length) | |
295 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
296 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
297 VandJCount$relLength = VandJCount$l / VandJCount$max | |
298 | |
299 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
300 | |
301 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
302 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
303 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
304 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
305 lapply(VJList, FUN=plotVJ) | |
306 | |
307 if(useD){ | |
308 plotDJ <- function(dat){ | |
309 if(length(dat[,1]) == 0){ | |
310 return() | |
311 } | |
312 img = ggplot() + | |
313 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
314 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
315 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
316 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
317 xlab("J genes") + | |
318 ylab("D Genes") | |
319 | |
320 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
321 print(img) | |
322 dev.off() | |
323 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
324 } | |
325 | |
326 | |
327 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
328 | |
329 DandJCount$l = log(DandJCount$Length) | |
330 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
331 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
332 DandJCount$relLength = DandJCount$l / DandJCount$max | |
333 | |
334 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
335 | |
336 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
337 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
338 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
339 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
340 lapply(DJList, FUN=plotDJ) | |
341 } | |
342 | |
343 sampleFile <- file("samples.txt") | |
344 un = unique(test$Sample) | |
345 un = paste(un, sep="\n") | |
346 writeLines(un, sampleFile) | |
347 close(sampleFile) | |
348 | |
349 | |
350 if("Replicate" %in% colnames(test)) | |
351 { | |
352 clonalityFrame = PROD | |
353 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | |
354 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | |
355 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) | |
356 | |
357 ClonalitySampleReplicatePrint <- function(dat){ | |
358 write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
359 } | |
360 | |
361 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) | |
362 #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) | |
363 | |
364 ClonalitySamplePrint <- function(dat){ | |
365 write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
366 } | |
367 | |
368 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) | |
369 #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) | |
370 | |
371 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | |
372 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
373 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
374 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
375 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
376 | |
377 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
378 tcct = textConnection(ct) | |
379 CT = read.table(tcct, sep="\t", header=TRUE) | |
380 close(tcct) | |
381 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
382 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
383 | |
384 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | |
385 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
386 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | |
387 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | |
388 | |
389 ReplicatePrint <- function(dat){ | |
390 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
391 } | |
392 | |
393 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
394 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
395 | |
396 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | |
397 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
398 | |
399 | |
400 ReplicateSumPrint <- function(dat){ | |
401 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
402 } | |
403 | |
404 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
405 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
406 | |
407 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
408 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
409 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | |
410 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
411 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
412 | |
413 ClonalityScorePrint <- function(dat){ | |
414 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
415 } | |
416 | |
417 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
418 clonalityScore = unique(clonalityScore) | |
419 | |
420 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
421 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
422 | |
423 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
424 | |
425 | |
426 | |
427 ClonalityOverviewPrint <- function(dat){ | |
428 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
429 } | |
430 | |
431 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
432 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
433 } | |
434 | |
435 if("Functionality" %in% colnames(test)) | |
436 { | |
437 newData = data.frame(data.table(PROD)[,list(unique=.N, | |
438 VH.DEL=mean(X3V.REGION.trimmed.nt.nb), | |
439 P1=mean(P3V.nt.nb), | |
440 N1=mean(N1.REGION.nt.nb), | |
441 P2=mean(P5D.nt.nb), | |
442 DEL.DH=mean(X5D.REGION.trimmed.nt.nb), | |
443 DH.DEL=mean(X3D.REGION.trimmed.nt.nb), | |
444 P3=mean(P3D.nt.nb), | |
445 N2=mean(N2.REGION.nt.nb), | |
446 P4=mean(P5J.nt.nb), | |
447 DEL.JH=mean(X5J.REGION.trimmed.nt.nb), | |
448 Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + | |
449 mean(X5D.REGION.trimmed.nt.nb) + | |
450 mean(X3D.REGION.trimmed.nt.nb) + | |
451 mean(X5J.REGION.trimmed.nt.nb)), | |
452 | |
453 Total.N=( mean(N1.REGION.nt.nb) + | |
454 mean(N2.REGION.nt.nb)), | |
455 | |
456 Total.P=( mean(P3V.nt.nb) + | |
457 mean(P5D.nt.nb) + | |
458 mean(P3D.nt.nb) + | |
459 mean(P5J.nt.nb))), | |
460 by=c("Sample")]) | |
461 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
462 } |