Mercurial > repos > davidvanzessen > combined_immune_repertoire_imgt
diff immunerepertoirecombined_imgt/RScript.r @ 0:e71c59b72669 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 09 Dec 2013 03:45:21 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/immunerepertoirecombined_imgt/RScript.r Mon Dec 09 03:45:21 2013 -0500 @@ -0,0 +1,295 @@ +#options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) + +args <- commandArgs(trailingOnly = TRUE) + +inFile = args[1] +outFile = args[2] +outDir = args[3] +clonalType = args[4] + +if (!("gridExtra" %in% rownames(installed.packages()))) { + install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") +} +library(gridExtra) +if (!("ggplot2" %in% rownames(installed.packages()))) { + install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") +} +require(ggplot2) +if (!("plyr" %in% rownames(installed.packages()))) { + install.packages("plyr", repos="http://cran.xl-mirror.nl/") +} +require(plyr) + +if (!("data.table" %in% rownames(installed.packages()))) { + install.packages("data.table", repos="http://cran.xl-mirror.nl/") +} +library(data.table) + + +test = read.table(inFile, sep="\t", header=TRUE, fill=T) + +test = test[test$Sample != "",] + +test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) +test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) +test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) + +#test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) +test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) + +PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] + +NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] + +#PRODF = PROD[ -1] + +PRODF = PROD + +#PRODF = unique(PRODF) +PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] + +PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) +PRODFV$Length = as.numeric(PRODFV$Length) +Total = 0 +Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) + +PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) +PRODFD$Length = as.numeric(PRODFD$Length) +Total = 0 +Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) + +PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) +PRODFJ$Length = as.numeric(PRODFJ$Length) +Total = 0 +Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) +PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) +PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) + +V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") +tcV = textConnection(V) +Vchain = read.table(tcV, sep="\t", header=TRUE) +PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) +close(tcV) + +D = c("v.name\tchr.orderD\nIGHD1-1\t1\nIGHD2-2\t2\nIGHD3-3\t3\nIGHD6-6\t4\nIGHD1-7\t5\nIGHD2-8\t6\nIGHD3-9\t7\nIGHD3-10\t8\nIGHD4-11\t9\nIGHD5-12\t10\nIGHD6-13\t11\nIGHD1-14\t12\nIGHD2-15\t13\nIGHD3-16\t14\nIGHD4-17\t15\nIGHD5-18\t16\nIGHD6-19\t17\nIGHD1-20\t18\nIGHD2-21\t19\nIGHD3-22\t20\nIGHD4-23\t21\nIGHD5-24\t22\nIGHD6-25\t23\nIGHD1-26\t24\nIGHD7-27\t25") +tcD = textConnection(D) +Dchain = read.table(tcD, sep="\t", header=TRUE) +PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) +close(tcD) + + +J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") +tcJ = textConnection(J) +Jchain = read.table(tcJ, sep="\t", header=TRUE) +PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) +close(tcJ) + +setwd(outDir) + +pV = ggplot(PRODFV) +pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") + +png("VPlot.png",width = 1280, height = 720) +pV +dev.off(); + +pD = ggplot(PRODFD) +pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") + +png("DPlot.png",width = 800, height = 600) +pD +dev.off(); + +pJ = ggplot(PRODFJ) +pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") + +png("JPlot.png",width = 800, height = 600) +pJ +dev.off(); + +revVchain = Vchain +revDchain = Dchain +revVchain$chr.orderV = rev(revVchain$chr.orderV) +revDchain$chr.orderD = rev(revDchain$chr.orderD) + +plotVD <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("D genes") + + ylab("V Genes") + + png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) + print(img) + dev.off() +} + +VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) + +VandDCount$l = log(VandDCount$Length) +maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) +VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) +VandDCount$relLength = VandDCount$l / VandDCount$max + +cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) + +completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) +completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) +completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) +VDList = split(completeVD, f=completeVD[,"Sample"]) + +lapply(VDList, FUN=plotVD) + + + +plotVJ <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("J genes") + + ylab("V Genes") + + png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) + print(img) + dev.off() +} + +VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) + +VandJCount$l = log(VandJCount$Length) +maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) +VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) +VandJCount$relLength = VandJCount$l / VandJCount$max + +cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) + +completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) +completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) +completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) +VJList = split(completeVJ, f=completeVJ[,"Sample"]) +lapply(VJList, FUN=plotVJ) + +plotDJ <- function(dat){ + if(length(dat[,1]) == 0){ + return() + } + img = ggplot() + + geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + + scale_fill_gradient(low="gold", high="blue", na.value="white") + + ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + + xlab("J genes") + + ylab("D Genes") + + png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) + print(img) + dev.off() +} + +DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) + +DandJCount$l = log(DandJCount$Length) +maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) +DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) +DandJCount$relLength = DandJCount$l / DandJCount$max + +cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) + +completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) +completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) +completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) +DJList = split(completeDJ, f=completeDJ[,"Sample"]) +lapply(DJList, FUN=plotDJ) + + +sampleFile <- file("samples.txt") +un = unique(test$Sample) +un = paste(un, sep="\n") +writeLines(un, sampleFile) +close(sampleFile) + + +if("Replicate" %in% colnames(test)) +{ + clonalityFrame = PROD + clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) + clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] + clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) + clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) + clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count + clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") + + ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') + tcct = textConnection(ct) + CT = read.table(tcct, sep="\t", header=TRUE) + close(tcct) + clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) + clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight + + ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) + ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) + ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads + + ReplicatePrint <- function(dat){ + write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) + lapply(ReplicateSplit, FUN=ReplicatePrint) + + ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) + + + ReplicateSumPrint <- function(dat){ + write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) + lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) + + clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) + clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) + + clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) + clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) + + ClonalityScorePrint <- function(dat){ + write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + clonalityScore = clonalFreqCount[c("Sample", "Result")] + clonalityScore = unique(clonalityScore) + + clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) + lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) + + clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] + + + + ClonalityOverviewPrint <- function(dat){ + write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) + } + + clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) + lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) +}