Mercurial > repos > davidvanzessen > combined_immune_repertoire_imgt
comparison immunerepertoirecombined_imgt/RScript.r @ 0:e71c59b72669 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 09 Dec 2013 03:45:21 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e71c59b72669 |
---|---|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 inFile = args[1] | |
6 outFile = args[2] | |
7 outDir = args[3] | |
8 clonalType = args[4] | |
9 | |
10 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
11 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
12 } | |
13 library(gridExtra) | |
14 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
15 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
16 } | |
17 require(ggplot2) | |
18 if (!("plyr" %in% rownames(installed.packages()))) { | |
19 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
20 } | |
21 require(plyr) | |
22 | |
23 if (!("data.table" %in% rownames(installed.packages()))) { | |
24 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
25 } | |
26 library(data.table) | |
27 | |
28 | |
29 test = read.table(inFile, sep="\t", header=TRUE, fill=T) | |
30 | |
31 test = test[test$Sample != "",] | |
32 | |
33 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | |
34 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | |
35 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | |
36 | |
37 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) | |
38 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) | |
39 | |
40 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] | |
41 | |
42 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] | |
43 | |
44 #PRODF = PROD[ -1] | |
45 | |
46 PRODF = PROD | |
47 | |
48 #PRODF = unique(PRODF) | |
49 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] | |
50 | |
51 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) | |
52 PRODFV$Length = as.numeric(PRODFV$Length) | |
53 Total = 0 | |
54 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
55 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
56 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
57 | |
58 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) | |
59 PRODFD$Length = as.numeric(PRODFD$Length) | |
60 Total = 0 | |
61 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
62 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
63 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
64 | |
65 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) | |
66 PRODFJ$Length = as.numeric(PRODFJ$Length) | |
67 Total = 0 | |
68 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
69 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
70 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
71 | |
72 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") | |
73 tcV = textConnection(V) | |
74 Vchain = read.table(tcV, sep="\t", header=TRUE) | |
75 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
76 close(tcV) | |
77 | |
78 D = c("v.name\tchr.orderD\nIGHD1-1\t1\nIGHD2-2\t2\nIGHD3-3\t3\nIGHD6-6\t4\nIGHD1-7\t5\nIGHD2-8\t6\nIGHD3-9\t7\nIGHD3-10\t8\nIGHD4-11\t9\nIGHD5-12\t10\nIGHD6-13\t11\nIGHD1-14\t12\nIGHD2-15\t13\nIGHD3-16\t14\nIGHD4-17\t15\nIGHD5-18\t16\nIGHD6-19\t17\nIGHD1-20\t18\nIGHD2-21\t19\nIGHD3-22\t20\nIGHD4-23\t21\nIGHD5-24\t22\nIGHD6-25\t23\nIGHD1-26\t24\nIGHD7-27\t25") | |
79 tcD = textConnection(D) | |
80 Dchain = read.table(tcD, sep="\t", header=TRUE) | |
81 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
82 close(tcD) | |
83 | |
84 | |
85 J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") | |
86 tcJ = textConnection(J) | |
87 Jchain = read.table(tcJ, sep="\t", header=TRUE) | |
88 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
89 close(tcJ) | |
90 | |
91 setwd(outDir) | |
92 | |
93 pV = ggplot(PRODFV) | |
94 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
95 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | |
96 | |
97 png("VPlot.png",width = 1280, height = 720) | |
98 pV | |
99 dev.off(); | |
100 | |
101 pD = ggplot(PRODFD) | |
102 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
103 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | |
104 | |
105 png("DPlot.png",width = 800, height = 600) | |
106 pD | |
107 dev.off(); | |
108 | |
109 pJ = ggplot(PRODFJ) | |
110 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
111 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
112 | |
113 png("JPlot.png",width = 800, height = 600) | |
114 pJ | |
115 dev.off(); | |
116 | |
117 revVchain = Vchain | |
118 revDchain = Dchain | |
119 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
120 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
121 | |
122 plotVD <- function(dat){ | |
123 if(length(dat[,1]) == 0){ | |
124 return() | |
125 } | |
126 img = ggplot() + | |
127 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
128 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
129 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
130 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
131 xlab("D genes") + | |
132 ylab("V Genes") | |
133 | |
134 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
135 print(img) | |
136 dev.off() | |
137 } | |
138 | |
139 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
140 | |
141 VandDCount$l = log(VandDCount$Length) | |
142 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
143 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
144 VandDCount$relLength = VandDCount$l / VandDCount$max | |
145 | |
146 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | |
147 | |
148 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | |
149 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
150 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
151 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
152 | |
153 lapply(VDList, FUN=plotVD) | |
154 | |
155 | |
156 | |
157 plotVJ <- function(dat){ | |
158 if(length(dat[,1]) == 0){ | |
159 return() | |
160 } | |
161 img = ggplot() + | |
162 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
163 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
164 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
165 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
166 xlab("J genes") + | |
167 ylab("V Genes") | |
168 | |
169 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
170 print(img) | |
171 dev.off() | |
172 } | |
173 | |
174 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
175 | |
176 VandJCount$l = log(VandJCount$Length) | |
177 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
178 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
179 VandJCount$relLength = VandJCount$l / VandJCount$max | |
180 | |
181 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
182 | |
183 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
184 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
185 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
186 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
187 lapply(VJList, FUN=plotVJ) | |
188 | |
189 plotDJ <- function(dat){ | |
190 if(length(dat[,1]) == 0){ | |
191 return() | |
192 } | |
193 img = ggplot() + | |
194 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
195 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
196 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
197 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
198 xlab("J genes") + | |
199 ylab("D Genes") | |
200 | |
201 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
202 print(img) | |
203 dev.off() | |
204 } | |
205 | |
206 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
207 | |
208 DandJCount$l = log(DandJCount$Length) | |
209 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
210 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
211 DandJCount$relLength = DandJCount$l / DandJCount$max | |
212 | |
213 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
214 | |
215 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
216 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
217 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
218 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
219 lapply(DJList, FUN=plotDJ) | |
220 | |
221 | |
222 sampleFile <- file("samples.txt") | |
223 un = unique(test$Sample) | |
224 un = paste(un, sep="\n") | |
225 writeLines(un, sampleFile) | |
226 close(sampleFile) | |
227 | |
228 | |
229 if("Replicate" %in% colnames(test)) | |
230 { | |
231 clonalityFrame = PROD | |
232 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | |
233 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | |
234 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | |
235 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
236 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
237 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
238 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
239 | |
240 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
241 tcct = textConnection(ct) | |
242 CT = read.table(tcct, sep="\t", header=TRUE) | |
243 close(tcct) | |
244 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
245 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
246 | |
247 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | |
248 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
249 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | |
250 | |
251 ReplicatePrint <- function(dat){ | |
252 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
253 } | |
254 | |
255 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
256 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
257 | |
258 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | |
259 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
260 | |
261 | |
262 ReplicateSumPrint <- function(dat){ | |
263 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
264 } | |
265 | |
266 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
267 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
268 | |
269 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
270 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
271 | |
272 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
273 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
274 | |
275 ClonalityScorePrint <- function(dat){ | |
276 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
277 } | |
278 | |
279 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
280 clonalityScore = unique(clonalityScore) | |
281 | |
282 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
283 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
284 | |
285 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
286 | |
287 | |
288 | |
289 ClonalityOverviewPrint <- function(dat){ | |
290 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
291 } | |
292 | |
293 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
294 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
295 } |