0
|
1 args <- commandArgs(trailingOnly = TRUE)
|
|
2
|
|
3 inFile = args[1]
|
|
4 outDir = args[2]
|
3
|
5 logfile = args[3]
|
|
6 min_freq = as.numeric(args[4])
|
|
7 min_cells = as.numeric(args[5])
|
|
8
|
|
9 cat("<html><table><tr><td>Starting analysis</td></tr>", file=logfile, append=F)
|
0
|
10
|
4
|
11 library(ggplot2)
|
|
12 library(reshape2)
|
|
13 library(data.table)
|
|
14 library(grid)
|
|
15 library(parallel)
|
0
|
16 #require(xtable)
|
3
|
17 cat("<tr><td>Reading input</td></tr>", file=logfile, append=T)
|
9
|
18 dat = read.table(inFile, header=T, sep="\t", dec=",", fill=T, stringsAsFactors=F)
|
|
19 dat = dat[!is.na(dat$Patient),]
|
|
20
|
0
|
21 setwd(outDir)
|
3
|
22 cat("<tr><td>Selecting first V/J Genes</td></tr>", file=logfile, append=T)
|
2
|
23 dat$V_Segment_Major_Gene = as.factor(as.character(lapply(strsplit(as.character(dat$V_Segment_Major_Gene), "; "), "[[", 1)))
|
|
24 dat$J_Segment_Major_Gene = as.factor(as.character(lapply(strsplit(as.character(dat$J_Segment_Major_Gene), "; "), "[[", 1)))
|
|
25
|
9
|
26 str(dat)
|
|
27 cat("<tr><td>Deduplication</td></tr>", file=logfile, append=T)
|
|
28 dat = data.frame(data.table(dat)[, list(Patient=unique(.SD$Patient), Clone_Molecule_Count_From_Spikes=sum(.SD$Clone_Molecule_Count_From_Spikes), Log10_Frequency=sum(.SD$Log10_Frequency), Total_Read_Count=sum(.SD$Total_Read_Count), Related_to_leukemia_clone=any(.SD$Related_to_leukemia_clone)), by=c("Sample", "Cell_Count", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence")])
|
|
29
|
3
|
30 cat("<tr><td>Calculating Frequency</td></tr>", file=logfile, append=T)
|
0
|
31 dat$Frequency = ((10^dat$Log10_Frequency)*100)
|
2
|
32
|
3
|
33 dat = dat[dat$Frequency >= min_freq,]
|
|
34
|
|
35 cat("<tr><td>Normalizing cell count to 1.000.000</td></tr>", file=logfile, append=T)
|
2
|
36 dat$normalized_read_count = round(dat$Clone_Molecule_Count_From_Spikes / dat$Cell_Count * 1000000 / 2)
|
3
|
37 dat = dat[dat$normalized_read_count >= min_cells,]
|
2
|
38 dat$paste = paste(dat$Sample, dat$V_Segment_Major_Gene, dat$J_Segment_Major_Gene, dat$CDR3_Sense_Sequence)
|
9
|
39 triplets = dat[grepl("VanDongen_cALL_14696", dat$Patient) | grepl("(16278)|(26402)|(26759)", dat$Sample),]
|
|
40
|
0
|
41 patients = split(dat, dat$Patient, drop=T)
|
9
|
42 intervalReads = rev(c(0,10,25,50,100,250,500,750,1000,10000))
|
6
|
43 intervalFreq = rev(c(0,0.01,0.05,0.1,0.5,1,5))
|
0
|
44 V_Segments = c(".*", "IGHV", "IGHD", "IGKV", "IGKV", "IgKINTR", "TRGV", "TRDV", "TRDD" , "TRBV")
|
|
45 J_Segments = c(".*", ".*", ".*", "IGKJ", "KDE", ".*", ".*", ".*", ".*", ".*")
|
|
46 Titles = c("Total", "IGH-Vh-Jh", "IGH-Dh-Jh", "Vk-Jk", "Vk-Kde" , "Intron-Kde", "TCRG", "TCRD-Vd-Dd", "TCRD-Dd-Dd", "TCRB-Vb-Jb")
|
|
47 Titles = factor(Titles, levels=Titles)
|
|
48 TitlesOrder = data.frame("Title"=Titles, "TitlesOrder"=1:length(Titles))
|
|
49
|
|
50 patientCountOnColumn <- function(x, product, interval, on, appendtxt=F){
|
|
51 x$Sample = factor(x$Sample, levels=unique(x$Sample))
|
|
52 onShort = "reads"
|
|
53 if(on == "Frequency"){
|
|
54 onShort = "freq"
|
|
55 }
|
|
56 splt = split(x, x$Sample, drop=T)
|
4
|
57 type="pair"
|
2
|
58 if(length(splt) == 1){
|
3
|
59 print(paste(paste(x[1,which(colnames(x) == "Patient")]), "has one sample"))
|
4
|
60 splt[[2]] = data.frame("Patient" = character(0), "Receptor" = character(0), "Sample" = character(0), "Cell_Count" = numeric(0), "Clone_Molecule_Count_From_Spikes" = numeric(0), "Log10_Frequency" = numeric(0), "Total_Read_Count" = numeric(0), "dsMol_per_1e6_cells" = numeric(0), "J_Segment_Major_Gene" = character(0), "V_Segment_Major_Gene" = character(0), "Clone_Sequence" = character(0), "CDR3_Sense_Sequence" = character(0), "Related_to_leukemia_clone" = logical(0), "Frequency"= numeric(0), "normalized_read_count" = numeric(0), "paste" = character(0))
|
|
61 type="single"
|
2
|
62 }
|
0
|
63 patient1 = splt[[1]]
|
|
64 patient2 = splt[[2]]
|
|
65
|
|
66 threshholdIndex = which(colnames(product) == "interval")
|
|
67 V_SegmentIndex = which(colnames(product) == "V_Segments")
|
|
68 J_SegmentIndex = which(colnames(product) == "J_Segments")
|
|
69 titleIndex = which(colnames(product) == "Titles")
|
|
70 sampleIndex = which(colnames(x) == "Sample")
|
|
71 patientIndex = which(colnames(x) == "Patient")
|
|
72 oneSample = paste(patient1[1,sampleIndex], sep="")
|
|
73 twoSample = paste(patient2[1,sampleIndex], sep="")
|
|
74 patient = paste(x[1,patientIndex])
|
3
|
75
|
0
|
76 switched = F
|
|
77 if(length(grep(".*_Right$", twoSample)) == 1 || length(grep(".*_Dx_BM$", twoSample)) == 1 || length(grep(".*_Dx$", twoSample)) == 1 ){
|
|
78 tmp = twoSample
|
|
79 twoSample = oneSample
|
|
80 oneSample = tmp
|
|
81 tmp = patient1
|
|
82 patient1 = patient2
|
|
83 patient2 = tmp
|
|
84 switched = T
|
|
85 }
|
|
86 if(appendtxt){
|
4
|
87 cat(paste(patient, oneSample, twoSample, type, sep="\t"), file="patients.txt", append=T, sep="", fill=3)
|
0
|
88 }
|
3
|
89 cat(paste("<tr><td>", patient, "</td></tr>", sep=""), file=logfile, append=T)
|
9
|
90
|
|
91 patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence)
|
|
92 patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence)
|
|
93
|
|
94 patientMerge = merge(patient1, patient2, by.x="merge", by.y="merge")
|
0
|
95 res1 = vector()
|
|
96 res2 = vector()
|
|
97 resBoth = vector()
|
|
98 read1Count = vector()
|
|
99 read2Count = vector()
|
2
|
100 locussum1 = vector()
|
|
101 locussum2 = vector()
|
9
|
102
|
|
103 print(patient)
|
0
|
104 #for(iter in 1){
|
|
105 for(iter in 1:length(product[,1])){
|
|
106 threshhold = product[iter,threshholdIndex]
|
|
107 V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
|
|
108 J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
|
|
109 both = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,paste(on, ".x", sep="")] > threshhold & patientMerge[,paste(on, ".y", sep="")] > threshhold)
|
10
|
110 one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$CDR3_Sense_Sequence %in% patientMerge[both,]$CDR3_Sense_Sequence.x))
|
|
111 two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$CDR3_Sense_Sequence %in% patientMerge[both,]$CDR3_Sense_Sequence.x))
|
2
|
112 read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count) + sum(patientMerge[both,]$normalized_read_count.x))
|
|
113 read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count) + sum(patientMerge[both,]$normalized_read_count.y))
|
0
|
114 res1 = append(res1, sum(one))
|
2
|
115 res2 = append(res2, sum(two))
|
0
|
116 resBoth = append(resBoth, sum(both))
|
2
|
117 locussum1 = append(locussum1, sum(patient1[(grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene)),]$normalized_read_count))
|
|
118 locussum2 = append(locussum2, sum(patient2[(grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene)),]$normalized_read_count))
|
0
|
119 #threshhold = 0
|
|
120 if(threshhold != 0){
|
|
121 if(sum(one) > 0){
|
9
|
122 dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "CDR3_Sense_Sequence", "Related_to_leukemia_clone")]
|
|
123 colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "CDR3 Sequence", "Related_to_leukemia_clone")
|
0
|
124 filenameOne = paste(oneSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
125 write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
126 }
|
|
127 if(sum(two) > 0){
|
9
|
128 dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "CDR3_Sense_Sequence", "Related_to_leukemia_clone")]
|
|
129 colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "CDR3 Sequence", "Related_to_leukemia_clone")
|
0
|
130 filenameTwo = paste(twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
131 write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
132 }
|
|
133 }
|
|
134 if(sum(both) > 0){
|
9
|
135 dfBoth = patientMerge[both,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "CDR3_Sense_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y")]
|
|
136 colnames(dfBoth) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"CDR3 Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample))
|
0
|
137 filenameBoth = paste(oneSample, "_", twoSample, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
138 write.table(dfBoth, file=paste(filenameBoth, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
139 }
|
|
140 }
|
2
|
141 patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "Both"=resBoth, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "Sum"=res1 + res2 + resBoth, "percentage" = round((resBoth/(res1 + res2 + resBoth)) * 100, digits=2), "Locus_sum1"=locussum1, "Locus_sum2"=locussum2)
|
0
|
142 if(sum(is.na(patientResult$percentage)) > 0){
|
|
143 patientResult[is.na(patientResult$percentage),]$percentage = 0
|
|
144 }
|
|
145 colnames(patientResult)[6] = oneSample
|
|
146 colnames(patientResult)[8] = twoSample
|
|
147 colnamesBak = colnames(patientResult)
|
2
|
148 colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", paste("Number of sequences ", patient, "_Both", sep=""), paste("Number of sequences", oneSample, sep=""), paste("Normalized Read Count", oneSample), paste("Number of sequences", twoSample, sep=""), paste("Normalized Read Count", twoSample), paste("Sum number of sequences", patient), paste("Percentage of sequences ", patient, "_Both", sep=""), paste("Locus Sum", oneSample), paste("Locus Sum", twoSample))
|
0
|
149 write.table(patientResult, file=paste(patient, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
150 colnames(patientResult) = colnamesBak
|
|
151
|
|
152 patientResult$Locus = factor(patientResult$Locus, Titles)
|
|
153 patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep=""))
|
|
154
|
|
155 plt = ggplot(patientResult[,c("Locus", "cut_off_value", "Both")])
|
|
156 plt = plt + geom_bar( aes( x=factor(cut_off_value), y=Both), stat='identity', position="dodge", fill="#79c36a")
|
|
157 plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
|
|
158 plt = plt + geom_text(aes(ymax=max(Both), x=cut_off_value,y=Both,label=Both), angle=90, hjust=0)
|
|
159 plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in both")
|
|
160 plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
|
|
161 png(paste(patient, "_", onShort, ".png", sep=""), width=1920, height=1080)
|
|
162 print(plt)
|
|
163 dev.off()
|
|
164 #(t,r,b,l)
|
|
165 plt = ggplot(patientResult[,c("Locus", "cut_off_value", "percentage")])
|
|
166 plt = plt + geom_bar( aes( x=factor(cut_off_value), y=percentage), stat='identity', position="dodge", fill="#79c36a")
|
|
167 plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
|
|
168 plt = plt + geom_text(aes(ymax=max(percentage), x=cut_off_value,y=percentage,label=percentage), angle=90, hjust=0)
|
|
169 plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("% clones in both left and right")
|
|
170 plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
|
|
171 png(paste(patient, "_percent_", onShort, ".png", sep=""), width=1920, height=1080)
|
|
172 print(plt)
|
|
173 dev.off()
|
|
174
|
|
175 patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample)] ,id.vars=1:2)
|
|
176 patientResult$relativeValue = patientResult$value * 10
|
|
177 patientResult[patientResult$relativeValue == 0,]$relativeValue = 1
|
|
178 plt = ggplot(patientResult)
|
|
179 plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge")
|
|
180 plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
|
|
181 plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9)))
|
|
182 plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.2)
|
|
183 plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.8)
|
|
184 plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle(paste("Number of clones in only ", oneSample, " and only ", twoSample, sep=""))
|
|
185 png(paste(patient, "_", onShort, "_both.png", sep=""), width=1920, height=1080)
|
|
186 print(plt)
|
|
187 dev.off()
|
|
188 }
|
|
189
|
3
|
190 cat("<tr><td>Starting Frequency analysis</td></tr>", file=logfile, append=T)
|
|
191
|
0
|
192 interval = intervalFreq
|
|
193 intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
|
4
|
194 product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
|
|
195 mclapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="Frequency", appendtxt=T)
|
0
|
196
|
3
|
197 cat("<tr><td>Starting Cell Count analysis</td></tr>", file=logfile, append=T)
|
|
198
|
0
|
199 interval = intervalReads
|
|
200 intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
|
4
|
201 product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
|
9
|
202 mclapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count")
|
0
|
203
|
3
|
204 cat("</table></html>", file=logfile, append=T)
|
|
205
|
7
|
206
|
|
207 tripletAnalysis <- function(patient1, label1, patient2, label2, patient3, label3, product, interval, on, appendTriplets= FALSE){
|
|
208 onShort = "reads"
|
|
209 if(on == "Frequency"){
|
|
210 onShort = "freq"
|
|
211 }
|
|
212 type="triplet"
|
|
213
|
|
214 threshholdIndex = which(colnames(product) == "interval")
|
|
215 V_SegmentIndex = which(colnames(product) == "V_Segments")
|
|
216 J_SegmentIndex = which(colnames(product) == "J_Segments")
|
|
217 titleIndex = which(colnames(product) == "Titles")
|
|
218 sampleIndex = which(colnames(patient1) == "Sample")
|
|
219 patientIndex = which(colnames(patient1) == "Patient")
|
|
220 oneSample = paste(patient1[1,sampleIndex], sep="")
|
|
221 twoSample = paste(patient2[1,sampleIndex], sep="")
|
|
222 threeSample = paste(patient3[1,sampleIndex], sep="")
|
|
223
|
9
|
224 patient1$merge = paste(patient1$V_Segment_Major_Gene, patient1$J_Segment_Major_Gene, patient1$CDR3_Sense_Sequence)
|
|
225 patient2$merge = paste(patient2$V_Segment_Major_Gene, patient2$J_Segment_Major_Gene, patient2$CDR3_Sense_Sequence)
|
|
226 patient3$merge = paste(patient3$V_Segment_Major_Gene, patient3$J_Segment_Major_Gene, patient3$CDR3_Sense_Sequence)
|
|
227
|
|
228 patientMerge = merge(patient1, patient2, by="merge")
|
|
229 patientMerge = merge(patientMerge, patient3, by="merge")
|
|
230 colnames(patientMerge)[28:length(colnames(patientMerge))] = paste(colnames(patientMerge)[28:length(colnames(patientMerge))], ".z", sep="")
|
7
|
231 res1 = vector()
|
|
232 res2 = vector()
|
|
233 res3 = vector()
|
|
234 resAll = vector()
|
|
235 read1Count = vector()
|
|
236 read2Count = vector()
|
|
237 read3Count = vector()
|
|
238
|
|
239 if(appendTriplets){
|
9
|
240 cat(paste(label1, label2, label3, sep="\t"), file="triplets.txt", append=T, sep="", fill=3)
|
7
|
241 }
|
|
242 for(iter in 1:length(product[,1])){
|
|
243 threshhold = product[iter,threshholdIndex]
|
|
244 V_Segment = paste(".*", as.character(product[iter,V_SegmentIndex]), ".*", sep="")
|
|
245 J_Segment = paste(".*", as.character(product[iter,J_SegmentIndex]), ".*", sep="")
|
|
246 all = (grepl(V_Segment, patientMerge$V_Segment_Major_Gene.x) & grepl(J_Segment, patientMerge$J_Segment_Major_Gene.x) & patientMerge[,paste(on, ".x", sep="")] > threshhold & patientMerge[,paste(on, ".y", sep="")] > threshhold & patientMerge[,paste(on, ".z", sep="")] > threshhold)
|
10
|
247 one = (grepl(V_Segment, patient1$V_Segment_Major_Gene) & grepl(J_Segment, patient1$J_Segment_Major_Gene) & patient1[,on] > threshhold & !(patient1$CDR3_Sense_Sequence %in% patientMerge[all,]$CDR3_Sense_Sequence.x))
|
|
248 two = (grepl(V_Segment, patient2$V_Segment_Major_Gene) & grepl(J_Segment, patient2$J_Segment_Major_Gene) & patient2[,on] > threshhold & !(patient2$CDR3_Sense_Sequence %in% patientMerge[all,]$CDR3_Sense_Sequence.x))
|
|
249 three = (grepl(V_Segment, patient3$V_Segment_Major_Gene) & grepl(J_Segment, patient3$J_Segment_Major_Gene) & patient3[,on] > threshhold & !(patient3$CDR3_Sense_Sequence %in% patientMerge[all,]$CDR3_Sense_Sequence.x))
|
7
|
250
|
|
251 read1Count = append(read1Count, sum(patient1[one,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.x))
|
|
252 read2Count = append(read2Count, sum(patient2[two,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.y))
|
|
253 read3Count = append(read3Count, sum(patient3[three,]$normalized_read_count) + sum(patientMerge[all,]$normalized_read_count.z))
|
|
254 res1 = append(res1, sum(one))
|
|
255 res2 = append(res2, sum(two))
|
|
256 res3 = append(res3, sum(three))
|
|
257 resAll = append(resAll, sum(all))
|
|
258 #threshhold = 0
|
|
259 if(threshhold != 0){
|
|
260 if(sum(one) > 0){
|
9
|
261 dfOne = patient1[one,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "CDR3_Sense_Sequence", "Related_to_leukemia_clone")]
|
7
|
262 colnames(dfOne) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Sequence", "Related_to_leukemia_clone")
|
|
263 filenameOne = paste(label1, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
264 write.table(dfOne, file=paste(filenameOne, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
265 }
|
|
266 if(sum(two) > 0){
|
9
|
267 dfTwo = patient2[two,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "CDR3_Sense_Sequence", "Related_to_leukemia_clone")]
|
7
|
268 colnames(dfTwo) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Sequence", "Related_to_leukemia_clone")
|
|
269 filenameTwo = paste(label2, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
270 write.table(dfTwo, file=paste(filenameTwo, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
271 }
|
|
272 if(sum(three) > 0){
|
9
|
273 dfThree = patient3[three,c("V_Segment_Major_Gene", "J_Segment_Major_Gene", "normalized_read_count", "Frequency", "CDR3_Sense_Sequence", "Related_to_leukemia_clone")]
|
7
|
274 colnames(dfThree) = c("Proximal segment", "Distal segment", "normalized_read_count", "Frequency", "Sequence", "Related_to_leukemia_clone")
|
|
275 filenameThree = paste(label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
276 write.table(dfThree, file=paste(filenameThree, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
277 }
|
|
278 }
|
|
279 if(sum(all) > 0){
|
9
|
280 dfAll = patientMerge[all,c("V_Segment_Major_Gene.x", "J_Segment_Major_Gene.x", "normalized_read_count.x", "Frequency.x", "Related_to_leukemia_clone.x", "CDR3_Sense_Sequence.x", "V_Segment_Major_Gene.y", "J_Segment_Major_Gene.y", "normalized_read_count.y", "Frequency.y", "Related_to_leukemia_clone.y", "V_Segment_Major_Gene.z", "J_Segment_Major_Gene.z", "normalized_read_count.z", "Frequency.z", "Related_to_leukemia_clone.z")]
|
|
281 colnames(dfAll) = c(paste("Proximal segment", oneSample), paste("Distal segment", oneSample), paste("Normalized_Read_Count", oneSample), paste("Frequency", oneSample), paste("Related_to_leukemia_clone", oneSample),"CDR3_Sense_Sequence", paste("Proximal segment", twoSample), paste("Distal segment", twoSample), paste("Normalized_Read_Count", twoSample), paste("Frequency", twoSample), paste("Related_to_leukemia_clone", twoSample), paste("Proximal segment", threeSample), paste("Distal segment", threeSample), paste("Normalized_Read_Count", threeSample), paste("Frequency", threeSample), paste("Related_to_leukemia_clone", threeSample))
|
7
|
282 filenameAll = paste(label1, "_", label2, "_", label3, "_", product[iter, titleIndex], "_", threshhold, sep="")
|
|
283 write.table(dfAll, file=paste(filenameAll, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
284 }
|
|
285 }
|
|
286 patientResult = data.frame("Locus"=product$Titles, "J_Segment"=product$J_Segments, "V_Segment"=product$V_Segments, "cut_off_value"=paste(">", product$interval, sep=""), "All"=resAll, "tmp1"=res1, "read_count1" = round(read1Count), "tmp2"=res2, "read_count2"= round(read2Count), "tmp3"=res3, "read_count3"=round(read3Count))
|
|
287 colnames(patientResult)[6] = oneSample
|
|
288 colnames(patientResult)[8] = twoSample
|
|
289 colnames(patientResult)[10] = threeSample
|
|
290
|
|
291 colnamesBak = colnames(patientResult)
|
|
292 colnames(patientResult) = c("Ig/TCR gene rearrangement type", "Distal Gene segment", "Proximal gene segment", "cut_off_value", "Number of sequences All", paste("Number of sequences", oneSample), paste("Normalized Read Count", oneSample), paste("Number of sequences", twoSample), paste("Normalized Read Count", twoSample), paste("Number of sequences", threeSample), paste("Normalized Read Count", threeSample))
|
|
293 write.table(patientResult, file=paste(label1, "_", label2, "_", label3, "_", onShort, ".txt", sep=""), quote=F, sep="\t", dec=",", row.names=F, col.names=T)
|
|
294 colnames(patientResult) = colnamesBak
|
|
295
|
|
296 patientResult$Locus = factor(patientResult$Locus, Titles)
|
|
297 patientResult$cut_off_value = factor(patientResult$cut_off_value, paste(">", interval, sep=""))
|
|
298
|
|
299 plt = ggplot(patientResult[,c("Locus", "cut_off_value", "All")])
|
|
300 plt = plt + geom_bar( aes( x=factor(cut_off_value), y=All), stat='identity', position="dodge", fill="#79c36a")
|
|
301 plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
|
|
302 plt = plt + geom_text(aes(ymax=max(All), x=cut_off_value,y=All,label=All), angle=90, hjust=0)
|
|
303 plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in All")
|
|
304 plt = plt + theme(plot.margin = unit(c(1,8.8,0.5,1.5), "lines"))
|
|
305 png(paste(label1, "_", label2, "_", label3, "_", onShort, "_total_all.png", sep=""), width=1920, height=1080)
|
|
306 print(plt)
|
|
307 dev.off()
|
|
308
|
|
309 fontSize = 4
|
|
310
|
|
311 bak = patientResult
|
|
312 patientResult = melt(patientResult[,c('Locus','cut_off_value', oneSample, twoSample, threeSample)] ,id.vars=1:2)
|
|
313 patientResult$relativeValue = patientResult$value * 10
|
|
314 patientResult[patientResult$relativeValue == 0,]$relativeValue = 1
|
|
315 plt = ggplot(patientResult)
|
|
316 plt = plt + geom_bar( aes( x=factor(cut_off_value), y=relativeValue, fill=variable), stat='identity', position="dodge")
|
|
317 plt = plt + facet_grid(.~Locus) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
|
|
318 plt = plt + scale_y_continuous(trans="log", breaks=10^c(0:10), labels=c(0, 10^c(0:9)))
|
|
319 plt = plt + geom_text(data=patientResult[patientResult$variable == oneSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=-0.7, size=fontSize)
|
|
320 plt = plt + geom_text(data=patientResult[patientResult$variable == twoSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=0.4, size=fontSize)
|
|
321 plt = plt + geom_text(data=patientResult[patientResult$variable == threeSample,], aes(ymax=max(value), x=cut_off_value,y=relativeValue,label=value), angle=90, position=position_dodge(width=0.9), hjust=0, vjust=1.5, size=fontSize)
|
|
322 plt = plt + xlab("Reads per locus") + ylab("Count") + ggtitle("Number of clones in only one sample")
|
|
323 png(paste(label1, "_", label2, "_", label3, "_", onShort, "_indiv_all.png", sep=""), width=1920, height=1080)
|
|
324 print(plt)
|
|
325 dev.off()
|
|
326 }
|
|
327
|
9
|
328
|
|
329 triplets$uniqueID = "ID"
|
|
330
|
|
331 triplets[grepl("16278_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
|
|
332 triplets[grepl("26402_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
|
|
333 triplets[grepl("26759_Left", triplets$Sample),]$uniqueID = "16278_26402_26759_Left"
|
|
334
|
|
335 triplets[grepl("16278_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
|
|
336 triplets[grepl("26402_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
|
|
337 triplets[grepl("26759_Right", triplets$Sample),]$uniqueID = "16278_26402_26759_Right"
|
|
338
|
|
339 triplets[grepl("14696", triplets$Patient),]$uniqueID = "14696"
|
|
340
|
|
341 triplets = data.frame(data.table(triplets)[, list(Patient=unique(.SD$uniqueID), Clone_Molecule_Count_From_Spikes=sum(.SD$Clone_Molecule_Count_From_Spikes), Log10_Frequency=sum(.SD$Log10_Frequency), Total_Read_Count=sum(.SD$Total_Read_Count), Related_to_leukemia_clone=any(.SD$Related_to_leukemia_clone)), by=c("Sample", "Cell_Count", "J_Segment_Major_Gene", "V_Segment_Major_Gene", "CDR3_Sense_Sequence")])
|
|
342
|
|
343 triplets$Frequency = (10^as.numeric(triplets$Log10_Frequency))*100
|
|
344 triplets$normalized_read_count = round(triplets$Clone_Molecule_Count_From_Spikes / triplets$Cell_Count * 1000000 / 2)
|
|
345
|
7
|
346 interval = intervalReads
|
|
347 intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
|
|
348 product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
|
|
349
|
9
|
350 one = triplets[triplets$Sample == "14696_reg_BM",]
|
|
351 two = triplets[triplets$Sample == "24536_reg_BM",]
|
|
352 three = triplets[triplets$Sample == "24062_reg_BM",]
|
8
|
353 tripletAnalysis(one, "14696_1", two, "14696_2", three, "14696_3", product=product, interval=interval, on="normalized_read_count", T)
|
7
|
354
|
9
|
355 one = triplets[triplets$Sample == "16278_Left",]
|
|
356 two = triplets[triplets$Sample == "26402_Left",]
|
|
357 three = triplets[triplets$Sample == "26759_Left",]
|
8
|
358 tripletAnalysis(one, "16278_Left", two, "26402_Left", three, "26759_Left", product=product, interval=interval, on="normalized_read_count", T)
|
7
|
359
|
9
|
360 one = triplets[triplets$Sample == "16278_Right",]
|
|
361 two = triplets[triplets$Sample == "26402_Right",]
|
|
362 three = triplets[triplets$Sample == "26759_Right",]
|
8
|
363 tripletAnalysis(one, "16278_Right", two, "26402_Right", three, "26759_Right", product=product, interval=interval, on="normalized_read_count", T)
|
7
|
364
|
|
365
|
|
366 interval = intervalFreq
|
|
367 intervalOrder = data.frame("interval"=paste(">", interval, sep=""), "intervalOrder"=1:length(interval))
|
|
368 product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval)))
|
|
369
|
9
|
370 one = triplets[triplets$Sample == "14696_reg_BM",]
|
|
371 two = triplets[triplets$Sample == "24536_reg_BM",]
|
|
372 three = triplets[triplets$Sample == "24062_reg_BM",]
|
8
|
373 tripletAnalysis(one, "14696_1", two, "14696_2", three, "14696_3", product=product, interval=interval, on="Frequency", F)
|
7
|
374
|
9
|
375 one = triplets[triplets$Sample == "16278_Left",]
|
|
376 two = triplets[triplets$Sample == "26402_Left",]
|
|
377 three = triplets[triplets$Sample == "26759_Left",]
|
8
|
378 tripletAnalysis(one, "16278_Left", two, "26402_Left", three, "26759_Left", product=product, interval=interval, on="Frequency", F)
|
7
|
379
|
9
|
380 one = triplets[triplets$Sample == "16278_Right",]
|
|
381 two = triplets[triplets$Sample == "26402_Right",]
|
|
382 three = triplets[triplets$Sample == "26759_Right",]
|
8
|
383 tripletAnalysis(one, "16278_Right", two, "26402_Right", three, "26759_Right", product=product, interval=interval, on="Frequency", F)
|