Mercurial > repos > bgruening > upload_testing
comparison linear_regression.py @ 90:b061185bcb83 draft
Uploaded
author | bernhardlutz |
---|---|
date | Thu, 23 Jan 2014 14:53:46 -0500 |
parents | c4a3a8999945 |
children | babf8ab95495 |
comparison
equal
deleted
inserted
replaced
89:71e953a4191d | 90:b061185bcb83 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 from galaxy import eggs | |
4 import sys, string | |
5 import rpy2.robjects as robjects | |
6 import rpy2.rlike.container as rlc | |
7 from rpy2.robjects.packages import importr | |
8 r = robjects.r | |
9 grdevices = importr('grDevices') | |
10 # from rpy import * | |
11 import numpy | |
12 | |
13 | |
14 def stop_err(msg): | |
15 sys.stderr.write(msg) | |
16 sys.exit() | |
17 | |
18 infile = sys.argv[1] | |
19 y_col = int(sys.argv[2])-1 | |
20 x_cols = sys.argv[3].split(',') | |
21 outfile = sys.argv[4] | |
22 outfile2 = sys.argv[5] | |
23 | |
24 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
25 fout = open(outfile,'w') | |
26 elems = [] | |
27 for i, line in enumerate( file ( infile )): | |
28 line = line.rstrip('\r\n') | |
29 if len( line )>0 and not line.startswith( '#' ): | |
30 elems = line.split( '\t' ) | |
31 break | |
32 if i == 30: | |
33 break # Hopefully we'll never get here... | |
34 | |
35 if len( elems )<1: | |
36 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
37 | |
38 y_vals = [] | |
39 x_vals = [] | |
40 | |
41 for k,col in enumerate(x_cols): | |
42 x_cols[k] = int(col)-1 | |
43 # x_vals.append([]) | |
44 | |
45 NA = 'NA' | |
46 for ind,line in enumerate( file( infile )): | |
47 if line and not line.startswith( '#' ): | |
48 try: | |
49 fields = line.split("\t") | |
50 try: | |
51 yval = float(fields[y_col]) | |
52 except: | |
53 yval = r('NA') | |
54 y_vals.append(yval) | |
55 for k,col in enumerate(x_cols): | |
56 try: | |
57 xval = float(fields[col]) | |
58 except: | |
59 xval = r('NA') | |
60 # x_vals[k].append(xval) | |
61 x_vals.append(xval) | |
62 except: | |
63 pass | |
64 # x_vals1 = numpy.asarray(x_vals).transpose() | |
65 # dat= r.list(x=array(x_vals1), y=y_vals) | |
66 fv = robjects.FloatVector(x_vals) | |
67 m = r['matrix'](fv, ncol=len(x_cols),byrow=True) | |
68 # ensure order for generating formula | |
69 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
70 dat = robjects.DataFrame(od) | |
71 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
72 formula = ' + '.join(dat.names).replace('+','~',1) | |
73 | |
74 #set_default_mode(NO_CONVERSION) | |
75 try: | |
76 #linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
77 linear_model = r.lm(formula, data = r['na.exclude'](dat)) | |
78 except RException, rex: | |
79 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
80 #set_default_mode(BASIC_CONVERSION) | |
81 | |
82 #coeffs=linear_model.as_py()['coefficients'] | |
83 #yintercept= coeffs['(Intercept)'] | |
84 coeffs=linear_model.rx2('coefficients') | |
85 yintercept= coeffs.rx2('(Intercept)')[0] | |
86 summary = r.summary(linear_model) | |
87 | |
88 #co = summary.get('coefficients', 'NA') | |
89 co = summary.rx2("coefficients") | |
90 | |
91 """ | |
92 if len(co) != len(x_vals)+1: | |
93 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
94 """ | |
95 #print >>fout, "p-value (Y-intercept)\t%s" %(co[0][3]) | |
96 print >>fout, "p-value (Y-intercept)\t%s" %(co.rx(1,4)[0]) | |
97 | |
98 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
99 try: | |
100 #slope = coeffs['x'] | |
101 slope = r.round(float(coeffs.rx2('x')[0]), digits=10) | |
102 except: | |
103 slope = 'NA' | |
104 try: | |
105 #pval = co[1][3] | |
106 pval = r.round(float(co.rx(2,4)[0]), digits=10) | |
107 except: | |
108 pval = 'NA' | |
109 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
110 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
111 else: #Multiple regression case with >1 predictors | |
112 ind=1 | |
113 #while ind < len(coeffs.keys()): | |
114 while ind < len(coeffs.names): | |
115 # print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs['x'+str(ind)]) | |
116 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs.rx2(coeffs.names[ind])[0]) | |
117 try: | |
118 #pval = co[ind][3] | |
119 pval = r.round(float(co.rx(ind+1,4)[0]), digits=10) | |
120 except: | |
121 pval = 'NA' | |
122 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
123 ind+=1 | |
124 | |
125 rsq = summary.rx2('r.squared')[0] | |
126 adjrsq = summary.rx2('adj.r.squared')[0] | |
127 fstat = summary.rx2('fstatistic').rx2('value')[0] | |
128 sigma = summary.rx2('sigma')[0] | |
129 | |
130 try: | |
131 rsq = r.round(float(rsq), digits=5) | |
132 adjrsq = r.round(float(adjrsq), digits=5) | |
133 fval = r.round(fstat['value'], digits=5) | |
134 fstat['value'] = str(fval) | |
135 sigma = r.round(float(sigma), digits=10) | |
136 except: | |
137 pass | |
138 | |
139 print >>fout, "R-squared\t%s" %(rsq) | |
140 print >>fout, "Adjusted R-squared\t%s" %(adjrsq) | |
141 print >>fout, "F-statistic\t%s" %(fstat) | |
142 print >>fout, "Sigma\t%s" %(sigma) | |
143 | |
144 r.pdf( outfile2, 8, 8 ) | |
145 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
146 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) | |
147 try: | |
148 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
149 r.abline(a=yintercept, b=slope, col="red") | |
150 except: | |
151 pass | |
152 else: | |
153 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
154 try: | |
155 r.plot(linear_model) | |
156 except: | |
157 pass | |
158 #r.dev_off() | |
159 grdevices.dev_off() |