80
|
1 #!/usr/bin/env python
|
|
2
|
|
3 from galaxy import eggs
|
|
4 import sys, string
|
|
5 import rpy2.robjects as robjects
|
|
6 import rpy2.rlike.container as rlc
|
|
7 from rpy2.robjects.packages import importr
|
|
8 r = robjects.r
|
|
9 grdevices = importr('grDevices')
|
|
10 # from rpy import *
|
|
11 import numpy
|
|
12
|
|
13
|
|
14 def stop_err(msg):
|
|
15 sys.stderr.write(msg)
|
|
16 sys.exit()
|
|
17
|
|
18 infile = sys.argv[1]
|
|
19 y_col = int(sys.argv[2])-1
|
|
20 x_cols = sys.argv[3].split(',')
|
|
21 outfile = sys.argv[4]
|
|
22 outfile2 = sys.argv[5]
|
|
23
|
|
24 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
|
|
25 fout = open(outfile,'w')
|
|
26 elems = []
|
|
27 for i, line in enumerate( file ( infile )):
|
|
28 line = line.rstrip('\r\n')
|
|
29 if len( line )>0 and not line.startswith( '#' ):
|
|
30 elems = line.split( '\t' )
|
|
31 break
|
|
32 if i == 30:
|
|
33 break # Hopefully we'll never get here...
|
|
34
|
|
35 if len( elems )<1:
|
|
36 stop_err( "The data in your input dataset is either missing or not formatted properly." )
|
|
37
|
|
38 y_vals = []
|
|
39 x_vals = []
|
|
40
|
|
41 for k,col in enumerate(x_cols):
|
|
42 x_cols[k] = int(col)-1
|
|
43 # x_vals.append([])
|
|
44
|
|
45 NA = 'NA'
|
|
46 for ind,line in enumerate( file( infile )):
|
|
47 if line and not line.startswith( '#' ):
|
|
48 try:
|
|
49 fields = line.split("\t")
|
|
50 try:
|
|
51 yval = float(fields[y_col])
|
|
52 except:
|
|
53 yval = r('NA')
|
|
54 y_vals.append(yval)
|
|
55 for k,col in enumerate(x_cols):
|
|
56 try:
|
|
57 xval = float(fields[col])
|
|
58 except:
|
|
59 xval = r('NA')
|
|
60 # x_vals[k].append(xval)
|
|
61 x_vals.append(xval)
|
|
62 except:
|
|
63 pass
|
|
64 # x_vals1 = numpy.asarray(x_vals).transpose()
|
|
65 # dat= r.list(x=array(x_vals1), y=y_vals)
|
|
66 fv = robjects.FloatVector(x_vals)
|
|
67 m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
|
|
68 # ensure order for generating formula
|
|
69 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
|
|
70 dat = robjects.DataFrame(od)
|
|
71 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
|
|
72 formula = ' + '.join(dat.names).replace('+','~',1)
|
|
73
|
|
74 #set_default_mode(NO_CONVERSION)
|
|
75 try:
|
|
76 #linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat))
|
|
77 linear_model = r.lm(formula, data = r['na.exclude'](dat))
|
|
78 except RException, rex:
|
|
79 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
|
|
80 #set_default_mode(BASIC_CONVERSION)
|
|
81
|
|
82 #coeffs=linear_model.as_py()['coefficients']
|
|
83 #yintercept= coeffs['(Intercept)']
|
|
84 coeffs=linear_model.rx2('coefficients')
|
|
85 yintercept= coeffs.rx2('(Intercept)')[0]
|
|
86 summary = r.summary(linear_model)
|
|
87
|
|
88 #co = summary.get('coefficients', 'NA')
|
|
89 co = summary.rx2("coefficients")
|
|
90
|
|
91 """
|
|
92 if len(co) != len(x_vals)+1:
|
|
93 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.")
|
|
94 """
|
|
95 #print >>fout, "p-value (Y-intercept)\t%s" %(co[0][3])
|
|
96 print >>fout, "p-value (Y-intercept)\t%s" %(co.rx(1,4)[0])
|
|
97
|
|
98 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable
|
|
99 try:
|
|
100 #slope = coeffs['x']
|
|
101 slope = r.round(float(coeffs.rx2('x')[0]), digits=10)
|
|
102 except:
|
|
103 slope = 'NA'
|
|
104 try:
|
|
105 #pval = co[1][3]
|
|
106 pval = r.round(float(co.rx(2,4)[0]), digits=10)
|
|
107 except:
|
|
108 pval = 'NA'
|
|
109 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope)
|
|
110 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval)
|
|
111 else: #Multiple regression case with >1 predictors
|
|
112 ind=1
|
|
113 #while ind < len(coeffs.keys()):
|
|
114 while ind < len(coeffs.names):
|
|
115 # print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs['x'+str(ind)])
|
|
116 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs.rx2(coeffs.names[ind])[0])
|
|
117 try:
|
|
118 #pval = co[ind][3]
|
|
119 pval = r.round(float(co.rx(ind+1,4)[0]), digits=10)
|
|
120 except:
|
|
121 pval = 'NA'
|
|
122 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval)
|
|
123 ind+=1
|
|
124
|
|
125 rsq = summary.rx2('r.squared')[0]
|
|
126 adjrsq = summary.rx2('adj.r.squared')[0]
|
|
127 fstat = summary.rx2('fstatistic').rx2('value')[0]
|
|
128 sigma = summary.rx2('sigma')[0]
|
|
129
|
|
130 try:
|
|
131 rsq = r.round(float(rsq), digits=5)
|
|
132 adjrsq = r.round(float(adjrsq), digits=5)
|
|
133 fval = r.round(fstat['value'], digits=5)
|
|
134 fstat['value'] = str(fval)
|
|
135 sigma = r.round(float(sigma), digits=10)
|
|
136 except:
|
|
137 pass
|
|
138
|
|
139 print >>fout, "R-squared\t%s" %(rsq)
|
|
140 print >>fout, "Adjusted R-squared\t%s" %(adjrsq)
|
|
141 print >>fout, "F-statistic\t%s" %(fstat)
|
|
142 print >>fout, "Sigma\t%s" %(sigma)
|
|
143
|
|
144 r.pdf( outfile2, 8, 8 )
|
|
145 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable
|
|
146 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept)
|
|
147 try:
|
|
148 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression")
|
|
149 r.abline(a=yintercept, b=slope, col="red")
|
|
150 except:
|
|
151 pass
|
|
152 else:
|
|
153 r.pairs(dat, main="Scatterplot Matrix", col="blue")
|
|
154 try:
|
|
155 r.plot(linear_model)
|
|
156 except:
|
|
157 pass
|
|
158 #r.dev_off()
|
|
159 grdevices.dev_off()
|