Mercurial > repos > bgruening > openms
view RTModel.xml @ 4:6ead64a594bd draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/openms commit 7a5239910fda9ed90cca286a38855703b40b1b56-dirty
| author | bgruening |
|---|---|
| date | Wed, 27 Jan 2016 10:06:49 -0500 |
| parents | 3d84209d3178 |
| children |
line wrap: on
line source
<?xml version="1.0" encoding="UTF-8"?> <!--This is a configuration file for the integration of a tools into Galaxy (https://galaxyproject.org/). This file was automatically generated using CTD2Galaxy.--> <!--Proposed Tool Section: [Peptide property prediction]--> <tool id="RTModel" name="RTModel" version="2.0.0"> <description>Trains a model for the retention time prediction of peptides from a training set.</description> <macros> <token name="@EXECUTABLE@">RTModel</token> <import>macros.xml</import> </macros> <expand macro="references"/> <expand macro="stdio"/> <expand macro="requirements"/> <command>RTModel #if $param_in: -in $param_in #end if #if $param_in_positive: -in_positive $param_in_positive #end if #if $param_in_negative: -in_negative $param_in_negative #end if #if $param_out: -out $param_out #end if #if $param_svm_type: -svm_type #if " " in str($param_svm_type): "$param_svm_type" #else $param_svm_type #end if #end if #if $param_nu: -nu $param_nu #end if #if $param_p: -p $param_p #end if #if $param_c: -c $param_c #end if #if $param_kernel_type: -kernel_type #if " " in str($param_kernel_type): "$param_kernel_type" #else $param_kernel_type #end if #end if #if $param_degree: -degree $param_degree #end if #if $param_border_length: -border_length $param_border_length #end if #if $param_max_std: -max_std $param_max_std #end if #if $param_k_mer_length: -k_mer_length $param_k_mer_length #end if #if $param_sigma: -sigma $param_sigma #end if #if $param_total_gradient_time: -total_gradient_time $param_total_gradient_time #end if #if $param_first_dim_rt: -first_dim_rt #end if #if $param_additive_cv: -additive_cv #end if -threads \${GALAXY_SLOTS:-24} #if $param_cv_skip_cv: -cv:skip_cv #end if #if $param_cv_number_of_runs: -cv:number_of_runs $param_cv_number_of_runs #end if #if $param_cv_number_of_partitions: -cv:number_of_partitions $param_cv_number_of_partitions #end if #if $param_cv_degree_start: -cv:degree_start $param_cv_degree_start #end if #if $param_cv_degree_step_size: -cv:degree_step_size $param_cv_degree_step_size #end if #if $param_cv_degree_stop: -cv:degree_stop $param_cv_degree_stop #end if #if $param_cv_p_start: -cv:p_start $param_cv_p_start #end if #if $param_cv_p_step_size: -cv:p_step_size $param_cv_p_step_size #end if #if $param_cv_p_stop: -cv:p_stop $param_cv_p_stop #end if #if $param_cv_c_start: -cv:c_start $param_cv_c_start #end if #if $param_cv_c_step_size: -cv:c_step_size $param_cv_c_step_size #end if #if $param_cv_c_stop: -cv:c_stop $param_cv_c_stop #end if #if $param_cv_nu_start: -cv:nu_start $param_cv_nu_start #end if #if $param_cv_nu_step_size: -cv:nu_step_size $param_cv_nu_step_size #end if #if $param_cv_nu_stop: -cv:nu_stop $param_cv_nu_stop #end if #if $param_cv_sigma_start: -cv:sigma_start $param_cv_sigma_start #end if #if $param_cv_sigma_step_size: -cv:sigma_step_size $param_cv_sigma_step_size #end if #if $param_cv_sigma_stop: -cv:sigma_stop $param_cv_sigma_stop #end if #if $adv_opts.adv_opts_selector=='advanced': #if $adv_opts.param_force: -force #end if #end if </command> <inputs> <param format="xml,txt" help="(-in) It is assumed that the file type is idXML. Alternatively you can provide a .txt file having a sequence and the corresponding rt per line. <br>" label="This is the name of the input file (RT prediction)" name="param_in" optional="True" type="data"/> <param format="xml" help="(-in_positive) " label="input file with positive examples (peptide separation prediction)" name="param_in_positive" optional="True" type="data"/> <param format="xml" help="(-in_negative) " label="input file with negative examples (peptide separation prediction)" name="param_in_negative" optional="True" type="data"/> <param help="(-svm_type) " label="the type of the svm (NU_SVR or EPSILON_SVR for RT prediction, automatically set <br>to C_SVC for separation prediction)" name="param_svm_type" optional="True" type="select" value="NU_SVR"> <option value="NU_SVR">NU_SVR</option> <option value="NU_SVC">NU_SVC</option> <option value="EPSILON_SVR">EPSILON_SVR</option> <option value="C_SVC">C_SVC</option> </param> <param help="(-nu) " label="the nu parameter [0..1] of the svm (for nu-SVR)" max="1.0" min="0.0" name="param_nu" optional="True" type="float" value="0.5"/> <param help="(-p) " label="the epsilon parameter of the svm (for epsilon-SVR)" name="param_p" type="float" value="0.1"/> <param help="(-c) " label="the penalty parameter of the svm" name="param_c" type="float" value="1.0"/> <param help="(-kernel_type) " label="the kernel type of the svm" name="param_kernel_type" optional="True" type="select" value="OLIGO"> <option value="LINEAR">LINEAR</option> <option value="RBF">RBF</option> <option value="POLY">POLY</option> <option value="OLIGO">OLIGO</option> </param> <param help="(-degree) " label="the degree parameter of the kernel function of the svm (POLY kernel)" min="1" name="param_degree" optional="True" type="integer" value="1"/> <param help="(-border_length) " label="length of the POBK" min="1" name="param_border_length" optional="True" type="integer" value="22"/> <param help="(-max_std) " label="max standard deviation for a peptide to be included (if there are several ones for one peptide string)(median is taken)" min="0.0" name="param_max_std" optional="True" type="float" value="10.0"/> <param help="(-k_mer_length) " label="k_mer length of the POBK" min="1" name="param_k_mer_length" optional="True" type="integer" value="1"/> <param help="(-sigma) " label="sigma of the POBK" name="param_sigma" type="float" value="5.0"/> <param help="(-total_gradient_time) " label="the time (in seconds) of the gradient (only for RT prediction)" min="1e-05" name="param_total_gradient_time" optional="True" type="float" value="1.0"/> <param checked="false" falsevalue="" help="(-first_dim_rt) " label="if set the model will be built for first_dim_rt" name="param_first_dim_rt" optional="True" truevalue="-first_dim_rt" type="boolean"/> <param checked="false" falsevalue="" help="(-additive_cv) " label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied <br>with the step size to get the new value" name="param_additive_cv" optional="True" truevalue="-additive_cv" type="boolean"/> <param checked="false" falsevalue="" help="(-skip_cv) " label="Set to enable Cross-Validation or set to true if the model should just be trained with 1 set of specified parameters" name="param_cv_skip_cv" optional="True" truevalue="-cv:skip_cv" type="boolean"/> <param help="(-number_of_runs) " label="number of runs for the CV (each run creates a new random partition of the data)" min="1" name="param_cv_number_of_runs" optional="True" type="integer" value="1"/> <param help="(-number_of_partitions) " label="number of CV partitions" min="2" name="param_cv_number_of_partitions" optional="True" type="integer" value="10"/> <param help="(-degree_start) " label="starting point of degree" min="1" name="param_cv_degree_start" optional="True" type="integer" value="1"/> <param help="(-degree_step_size) " label="step size point of degree" name="param_cv_degree_step_size" type="integer" value="2"/> <param help="(-degree_stop) " label="stopping point of degree" name="param_cv_degree_stop" type="integer" value="4"/> <param help="(-p_start) " label="starting point of p" name="param_cv_p_start" type="float" value="1.0"/> <param help="(-p_step_size) " label="step size point of p" name="param_cv_p_step_size" type="float" value="10.0"/> <param help="(-p_stop) " label="stopping point of p" name="param_cv_p_stop" type="float" value="1000.0"/> <param help="(-c_start) " label="starting point of c" name="param_cv_c_start" type="float" value="1.0"/> <param help="(-c_step_size) " label="step size of c" name="param_cv_c_step_size" type="float" value="10.0"/> <param help="(-c_stop) " label="stopping point of c" name="param_cv_c_stop" type="float" value="1000.0"/> <param help="(-nu_start) " label="starting point of nu" max="1.0" min="0.0" name="param_cv_nu_start" optional="True" type="float" value="0.3"/> <param help="(-nu_step_size) " label="step size of nu" name="param_cv_nu_step_size" type="float" value="1.2"/> <param help="(-nu_stop) " label="stopping point of nu" max="1.0" min="0.0" name="param_cv_nu_stop" optional="True" type="float" value="0.7"/> <param help="(-sigma_start) " label="starting point of sigma" name="param_cv_sigma_start" type="float" value="1.0"/> <param help="(-sigma_step_size) " label="step size of sigma" name="param_cv_sigma_step_size" type="float" value="1.3"/> <param help="(-sigma_stop) " label="stopping point of sigma" name="param_cv_sigma_stop" type="float" value="15.0"/> <expand macro="advanced_options"> <param checked="false" falsevalue="" help="(-force) " label="Overwrite tool specific checks" name="param_force" optional="True" truevalue="-force" type="boolean"/> </expand> </inputs> <outputs> <data format="txt" name="param_out"/> </outputs> <help>Trains a model for the retention time prediction of peptides from a training set. For more information, visit http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/TOPP_RTModel.html</help> </tool>
