Mercurial > repos > bgruening > openms
diff RTModel.xml @ 4:6ead64a594bd draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/openms commit 7a5239910fda9ed90cca286a38855703b40b1b56-dirty
| author | bgruening |
|---|---|
| date | Wed, 27 Jan 2016 10:06:49 -0500 |
| parents | 3d84209d3178 |
| children |
line wrap: on
line diff
--- a/RTModel.xml Mon Oct 13 10:18:22 2014 -0400 +++ b/RTModel.xml Wed Jan 27 10:06:49 2016 -0500 @@ -1,107 +1,193 @@ -<?xml version='1.0' encoding='UTF-8'?> -<tool id="RTModel" name="RTModel" version="1.12.0"> - <description>Trains a model for the retention time prediction of peptides from a training set.</description> - <macros> - <token name="@EXECUTABLE@">RTModel</token> - <import>macros.xml</import> - </macros> - <expand macro="stdio"/> - <expand macro="requirements"/> - <command>RTModel +<?xml version="1.0" encoding="UTF-8"?> + <!--This is a configuration file for the integration of a tools into Galaxy (https://galaxyproject.org/). This file was automatically generated using CTD2Galaxy.--> + <!--Proposed Tool Section: [Peptide property prediction]--> + <tool id="RTModel" name="RTModel" version="2.0.0"> + <description>Trains a model for the retention time prediction of peptides from a training set.</description> + <macros> + <token name="@EXECUTABLE@">RTModel</token> + <import>macros.xml</import> + </macros> + <expand macro="references"/> + <expand macro="stdio"/> + <expand macro="requirements"/> + <command>RTModel --in ${param_in} --in_positive ${param_in_positive} --in_negative ${param_in_negative} --out ${param_out} --svm_type ${param_svm_type} --nu ${param_nu} --p ${param_p} --c ${param_c} --kernel_type ${param_kernel_type} --degree ${param_degree} --border_length ${param_border_length} --max_std ${param_max_std} --k_mer_length ${param_k_mer_length} --sigma ${param_sigma} --total_gradient_time ${param_total_gradient_time} -${param_first_dim_rt} -${param_additive_cv} --threads \${GALAXY_SLOTS:-24} -${param_skip_cv} --cv:number_of_runs ${param_number_of_runs} --cv:number_of_partitions ${param_number_of_partitions} --cv:degree_start ${param_degree_start} --cv:degree_step_size ${param_degree_step_size} --cv:degree_stop ${param_degree_stop} --cv:p_start ${param_p_start} --cv:p_step_size ${param_p_step_size} --cv:p_stop ${param_p_stop} --cv:c_start ${param_c_start} --cv:c_step_size ${param_c_step_size} --cv:c_stop ${param_c_stop} --cv:nu_start ${param_nu_start} --cv:nu_step_size ${param_nu_step_size} --cv:nu_stop ${param_nu_stop} --cv:sigma_start ${param_sigma_start} --cv:sigma_step_size ${param_sigma_step_size} --cv:sigma_stop ${param_sigma_stop} +#if $param_in: + -in $param_in +#end if +#if $param_in_positive: + -in_positive $param_in_positive +#end if +#if $param_in_negative: + -in_negative $param_in_negative +#end if +#if $param_out: + -out $param_out +#end if +#if $param_svm_type: + -svm_type + #if " " in str($param_svm_type): + "$param_svm_type" + #else + $param_svm_type + #end if +#end if +#if $param_nu: + -nu $param_nu +#end if +#if $param_p: + -p $param_p +#end if +#if $param_c: + -c $param_c +#end if +#if $param_kernel_type: + -kernel_type + #if " " in str($param_kernel_type): + "$param_kernel_type" + #else + $param_kernel_type + #end if +#end if +#if $param_degree: + -degree $param_degree +#end if +#if $param_border_length: + -border_length $param_border_length +#end if +#if $param_max_std: + -max_std $param_max_std +#end if +#if $param_k_mer_length: + -k_mer_length $param_k_mer_length +#end if +#if $param_sigma: + -sigma $param_sigma +#end if +#if $param_total_gradient_time: + -total_gradient_time $param_total_gradient_time +#end if +#if $param_first_dim_rt: + -first_dim_rt +#end if +#if $param_additive_cv: + -additive_cv +#end if +-threads \${GALAXY_SLOTS:-24} +#if $param_cv_skip_cv: + -cv:skip_cv +#end if +#if $param_cv_number_of_runs: + -cv:number_of_runs $param_cv_number_of_runs +#end if +#if $param_cv_number_of_partitions: + -cv:number_of_partitions $param_cv_number_of_partitions +#end if +#if $param_cv_degree_start: + -cv:degree_start $param_cv_degree_start +#end if +#if $param_cv_degree_step_size: + -cv:degree_step_size $param_cv_degree_step_size +#end if +#if $param_cv_degree_stop: + -cv:degree_stop $param_cv_degree_stop +#end if +#if $param_cv_p_start: + -cv:p_start $param_cv_p_start +#end if +#if $param_cv_p_step_size: + -cv:p_step_size $param_cv_p_step_size +#end if +#if $param_cv_p_stop: + -cv:p_stop $param_cv_p_stop +#end if +#if $param_cv_c_start: + -cv:c_start $param_cv_c_start +#end if +#if $param_cv_c_step_size: + -cv:c_step_size $param_cv_c_step_size +#end if +#if $param_cv_c_stop: + -cv:c_stop $param_cv_c_stop +#end if +#if $param_cv_nu_start: + -cv:nu_start $param_cv_nu_start +#end if +#if $param_cv_nu_step_size: + -cv:nu_step_size $param_cv_nu_step_size +#end if +#if $param_cv_nu_stop: + -cv:nu_stop $param_cv_nu_stop +#end if +#if $param_cv_sigma_start: + -cv:sigma_start $param_cv_sigma_start +#end if +#if $param_cv_sigma_step_size: + -cv:sigma_step_size $param_cv_sigma_step_size +#end if +#if $param_cv_sigma_stop: + -cv:sigma_stop $param_cv_sigma_stop +#end if +#if $adv_opts.adv_opts_selector=='advanced': + #if $adv_opts.param_force: + -force +#end if +#end if </command> - <inputs> - <param name="param_in" type="data" format="idXML,txt" optional="True" label="This is the name of the input file (RT prediction). It is assumed that the file type is idXML. Alternatively you can provide a .txt file having a sequence and the corresponding rt per line.#br#" help="(-in)"/> - <param name="param_in_positive" type="data" format="idXML" optional="True" label="input file with positive examples (peptide separation prediction)#br#" help="(-in_positive)"/> - <param name="param_in_negative" type="data" format="idXML" optional="True" label="input file with negative examples (peptide separation prediction)#br#" help="(-in_negative)"/> - <param name="param_svm_type" type="select" optional="True" value="NU_SVR" label="the type of the svm (NU_SVR or EPSILON_SVR for RT prediction, automatically set#br#to C_SVC for separation prediction)#br#" help="(-svm_type)"> - <option value="NU_SVR">NU_SVR</option> - <option value="NU_SVC">NU_SVC</option> - <option value="EPSILON_SVR">EPSILON_SVR</option> - <option value="C_SVC">C_SVC</option> - </param> - <param name="param_nu" type="float" min="0.0" max="1.0" optional="True" value="0.5" label="the nu parameter [0..1] of the svm (for nu-SVR)" help="(-nu)"/> - <param name="param_p" type="float" value="0.1" label="the epsilon parameter of the svm (for epsilon-SVR)" help="(-p)"/> - <param name="param_c" type="float" value="1.0" label="the penalty parameter of the svm" help="(-c)"/> - <param name="param_kernel_type" type="select" optional="True" value="OLIGO" label="the kernel type of the svm" help="(-kernel_type)"> - <option value="LINEAR">LINEAR</option> - <option value="RBF">RBF</option> - <option value="POLY">POLY</option> - <option value="OLIGO">OLIGO</option> - </param> - <param name="param_degree" type="integer" min="1" optional="True" value="1" label="the degree parameter of the kernel function of the svm (POLY kernel)#br#" help="(-degree)"/> - <param name="param_border_length" type="integer" min="1" optional="True" value="22" label="length of the POBK" help="(-border_length)"/> - <param name="param_max_std" type="float" min="0.0" optional="True" value="10.0" label="max standard deviation for a peptide to be included (if there are several ones for one peptide string)(median is taken)" help="(-max_std)"/> - <param name="param_k_mer_length" type="integer" min="1" optional="True" value="1" label="k_mer length of the POBK" help="(-k_mer_length)"/> - <param name="param_sigma" type="float" value="5.0" label="sigma of the POBK" help="(-sigma)"/> - <param name="param_total_gradient_time" type="float" min="1e-05" optional="True" value="1.0" label="the time (in seconds) of the gradient (only for RT prediction)" help="(-total_gradient_time)"/> - <param name="param_first_dim_rt" type="boolean" truevalue="-first_dim_rt true" falsevalue="-first_dim_rt false" checked="false" optional="True" label="if set the model will be built for first_dim_rt" help="(-first_dim_rt)"/> - <param name="param_additive_cv" type="boolean" truevalue="-additive_cv true" falsevalue="-additive_cv false" checked="false" optional="True" label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied#br#with the step size to get the new value" help="(-additive_cv)"/> - <param name="param_skip_cv" type="boolean" truevalue="-cv:skip_cv true" falsevalue="-cv:skip_cv false" checked="false" optional="True" label="Set to enable Cross-Validation or set to true if the model should just be trained with 1 set of specified parameters." help="(-skip_cv)"/> - <param name="param_number_of_runs" type="integer" min="1" optional="True" value="1" label="number of runs for the CV (each run creates a new random partition of the data)" help="(-number_of_runs)"/> - <param name="param_number_of_partitions" type="integer" min="2" optional="True" value="10" label="number of CV partitions" help="(-number_of_partitions)"/> - <param name="param_degree_start" type="integer" min="1" optional="True" value="1" label="starting point of degree" help="(-degree_start)"/> - <param name="param_degree_step_size" type="integer" value="2" label="step size point of degree" help="(-degree_step_size)"/> - <param name="param_degree_stop" type="integer" value="4" label="stopping point of degree" help="(-degree_stop)"/> - <param name="param_p_start" type="float" value="1.0" label="starting point of p" help="(-p_start)"/> - <param name="param_p_step_size" type="float" value="10.0" label="step size point of p" help="(-p_step_size)"/> - <param name="param_p_stop" type="float" value="1000.0" label="stopping point of p" help="(-p_stop)"/> - <param name="param_c_start" type="float" value="1.0" label="starting point of c" help="(-c_start)"/> - <param name="param_c_step_size" type="float" value="10.0" label="step size of c" help="(-c_step_size)"/> - <param name="param_c_stop" type="float" value="1000.0" label="stopping point of c" help="(-c_stop)"/> - <param name="param_nu_start" type="float" min="0.0" max="1.0" optional="True" value="0.3" label="starting point of nu" help="(-nu_start)"/> - <param name="param_nu_step_size" type="float" value="1.2" label="step size of nu" help="(-nu_step_size)"/> - <param name="param_nu_stop" type="float" min="0.0" max="1.0" optional="True" value="0.7" label="stopping point of nu" help="(-nu_stop)"/> - <param name="param_sigma_start" type="float" value="1.0" label="starting point of sigma" help="(-sigma_start)"/> - <param name="param_sigma_step_size" type="float" value="1.3" label="step size of sigma" help="(-sigma_step_size)"/> - <param name="param_sigma_stop" type="float" value="15.0" label="stopping point of sigma" help="(-sigma_stop)"/> - </inputs> - <outputs> - <data name="param_out" label="output file: the model in libsvm format" format="txt"/> - </outputs> - <help>**What it does** - -Trains a model for the retention time prediction of peptides from a training set. + <inputs> + <param format="xml,txt" help="(-in) It is assumed that the file type is idXML. Alternatively you can provide a .txt file having a sequence and the corresponding rt per line. <br>" label="This is the name of the input file (RT prediction)" name="param_in" optional="True" type="data"/> + <param format="xml" help="(-in_positive) " label="input file with positive examples (peptide separation prediction)" name="param_in_positive" optional="True" type="data"/> + <param format="xml" help="(-in_negative) " label="input file with negative examples (peptide separation prediction)" name="param_in_negative" optional="True" type="data"/> + <param help="(-svm_type) " label="the type of the svm (NU_SVR or EPSILON_SVR for RT prediction, automatically set <br>to C_SVC for separation prediction)" name="param_svm_type" optional="True" type="select" value="NU_SVR"> + <option value="NU_SVR">NU_SVR</option> + <option value="NU_SVC">NU_SVC</option> + <option value="EPSILON_SVR">EPSILON_SVR</option> + <option value="C_SVC">C_SVC</option> + </param> + <param help="(-nu) " label="the nu parameter [0..1] of the svm (for nu-SVR)" max="1.0" min="0.0" name="param_nu" optional="True" type="float" value="0.5"/> + <param help="(-p) " label="the epsilon parameter of the svm (for epsilon-SVR)" name="param_p" type="float" value="0.1"/> + <param help="(-c) " label="the penalty parameter of the svm" name="param_c" type="float" value="1.0"/> + <param help="(-kernel_type) " label="the kernel type of the svm" name="param_kernel_type" optional="True" type="select" value="OLIGO"> + <option value="LINEAR">LINEAR</option> + <option value="RBF">RBF</option> + <option value="POLY">POLY</option> + <option value="OLIGO">OLIGO</option> + </param> + <param help="(-degree) " label="the degree parameter of the kernel function of the svm (POLY kernel)" min="1" name="param_degree" optional="True" type="integer" value="1"/> + <param help="(-border_length) " label="length of the POBK" min="1" name="param_border_length" optional="True" type="integer" value="22"/> + <param help="(-max_std) " label="max standard deviation for a peptide to be included (if there are several ones for one peptide string)(median is taken)" min="0.0" name="param_max_std" optional="True" type="float" value="10.0"/> + <param help="(-k_mer_length) " label="k_mer length of the POBK" min="1" name="param_k_mer_length" optional="True" type="integer" value="1"/> + <param help="(-sigma) " label="sigma of the POBK" name="param_sigma" type="float" value="5.0"/> + <param help="(-total_gradient_time) " label="the time (in seconds) of the gradient (only for RT prediction)" min="1e-05" name="param_total_gradient_time" optional="True" type="float" value="1.0"/> + <param checked="false" falsevalue="" help="(-first_dim_rt) " label="if set the model will be built for first_dim_rt" name="param_first_dim_rt" optional="True" truevalue="-first_dim_rt" type="boolean"/> + <param checked="false" falsevalue="" help="(-additive_cv) " label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied <br>with the step size to get the new value" name="param_additive_cv" optional="True" truevalue="-additive_cv" type="boolean"/> + <param checked="false" falsevalue="" help="(-skip_cv) " label="Set to enable Cross-Validation or set to true if the model should just be trained with 1 set of specified parameters" name="param_cv_skip_cv" optional="True" truevalue="-cv:skip_cv" type="boolean"/> + <param help="(-number_of_runs) " label="number of runs for the CV (each run creates a new random partition of the data)" min="1" name="param_cv_number_of_runs" optional="True" type="integer" value="1"/> + <param help="(-number_of_partitions) " label="number of CV partitions" min="2" name="param_cv_number_of_partitions" optional="True" type="integer" value="10"/> + <param help="(-degree_start) " label="starting point of degree" min="1" name="param_cv_degree_start" optional="True" type="integer" value="1"/> + <param help="(-degree_step_size) " label="step size point of degree" name="param_cv_degree_step_size" type="integer" value="2"/> + <param help="(-degree_stop) " label="stopping point of degree" name="param_cv_degree_stop" type="integer" value="4"/> + <param help="(-p_start) " label="starting point of p" name="param_cv_p_start" type="float" value="1.0"/> + <param help="(-p_step_size) " label="step size point of p" name="param_cv_p_step_size" type="float" value="10.0"/> + <param help="(-p_stop) " label="stopping point of p" name="param_cv_p_stop" type="float" value="1000.0"/> + <param help="(-c_start) " label="starting point of c" name="param_cv_c_start" type="float" value="1.0"/> + <param help="(-c_step_size) " label="step size of c" name="param_cv_c_step_size" type="float" value="10.0"/> + <param help="(-c_stop) " label="stopping point of c" name="param_cv_c_stop" type="float" value="1000.0"/> + <param help="(-nu_start) " label="starting point of nu" max="1.0" min="0.0" name="param_cv_nu_start" optional="True" type="float" value="0.3"/> + <param help="(-nu_step_size) " label="step size of nu" name="param_cv_nu_step_size" type="float" value="1.2"/> + <param help="(-nu_stop) " label="stopping point of nu" max="1.0" min="0.0" name="param_cv_nu_stop" optional="True" type="float" value="0.7"/> + <param help="(-sigma_start) " label="starting point of sigma" name="param_cv_sigma_start" type="float" value="1.0"/> + <param help="(-sigma_step_size) " label="step size of sigma" name="param_cv_sigma_step_size" type="float" value="1.3"/> + <param help="(-sigma_stop) " label="stopping point of sigma" name="param_cv_sigma_stop" type="float" value="15.0"/> + <expand macro="advanced_options"> + <param checked="false" falsevalue="" help="(-force) " label="Overwrite tool specific checks" name="param_force" optional="True" truevalue="-force" type="boolean"/> + </expand> + </inputs> + <outputs> + <data format="txt" name="param_out"/> + </outputs> + <help>Trains a model for the retention time prediction of peptides from a training set. -For more information, visit http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/TOPP_RTModel.html - -@REFERENCES@ -</help> -</tool> +For more information, visit http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/TOPP_RTModel.html</help> + </tool>
