Mercurial > repos > saketkc > chasm_web
comparison tools/chasm/chasm_web.xml @ 1:8eaaa7f6b619
Move files to tools
| author | Saket Choudhary <saketkc@gmail.com> |
|---|---|
| date | Fri, 01 Nov 2013 02:07:53 +0530 |
| parents | |
| children | 89407d4da3ca |
comparison
equal
deleted
inserted
replaced
| 0:aea1a2363a94 | 1:8eaaa7f6b619 |
|---|---|
| 1 <tool id="chasm_webservice" name="CHASM Webservice" version="1.0.0" hidden="false"> | |
| 2 <requirements> | |
| 3 <requirement type="python-module">requests</requirement> | |
| 4 <requirement type="python-module">xlrd</requirement> | |
| 5 </requirements> | |
| 6 <description>CHASM score using CRAVAT webservice</description> | |
| 7 <command interpreter="python"> | |
| 8 chasm_web.py --path $input --analysis_type $analysis_type --cancertype $tissue_type --email $__user_email__ --gene_analysis_out $gene_analysis_out --variant_analysis_out $variant_analysis_out --amino_acid_level_analysis_out $amino_acid_level_analysis_out --error_file $error_file | |
| 9 </command> | |
| 10 <inputs> | |
| 11 <param format="txt" name="input" type="data" label="Variants File" /> | |
| 12 <param name="analysis_type" type="select" label="Choose analysis type" help=" | |
| 13 Cancer driver analysis predicts whether\ | |
| 14 the submitted variants are cancer drivers.\ | |
| 15 Functional effect analysis predicts whether\ | |
| 16 the submitted variants will have any\ | |
| 17 functional effect on their translated proteins.\ | |
| 18 Annotation only provides\ | |
| 19 GeneCard and PubMed information on\ | |
| 20 the genes containing the submitted variants."> | |
| 21 <option value="driver">Cancer driver analysis</option> | |
| 22 <option value="functional">Functional effect analysis</option> | |
| 23 <option value="geneannotationonly">Annotation only</option> | |
| 24 </param> | |
| 25 | |
| 26 <param name="gene_annotation" type="select" label="Include Gene annotation"> | |
| 27 <option value="no">No</option> | |
| 28 <option value="yes">Yes</option> | |
| 29 </param> | |
| 30 | |
| 31 <param name="tissue_type" type="select" label="Tissue Type"> | |
| 32 <option value="Bladder">Bladder</option> | |
| 33 <option value="Blood-Lymphocyte">Blood-Lymphocyte</option> | |
| 34 <option value="Blood-Myeloid">Blood-Myeloid</option> | |
| 35 <option value="Brain-Cerebellum">Brain-Cerebellum</option> | |
| 36 <option value="Brain-Glioblastoma_Multiforme">Brain-Glioblastoma_Multiforme</option> | |
| 37 <option value="Brain-Lower_Grade_Glioma">Brain-Lower_Grade_Glioma</option> | |
| 38 <option value="Breast">Breast</option> | |
| 39 <option value="Cervix">Cervix</option> | |
| 40 <option value="Colon">Colon</option> | |
| 41 <option value="Head_and_Neck">Head_and_Neck</option> | |
| 42 <option value="Kidney-Chromophobe">Kidney-Chromophobe</option> | |
| 43 <option value="Kidney-Clear_Cell">Kidney-Clear_Cell</option> | |
| 44 <option value="Kidney-Papiallary_Cell">Kidney-Papiallary_Cell</option> | |
| 45 <option value="Liver-Nonviral">Liver-Nonviral</option> | |
| 46 <option value="Liver-Viral">Liver-Viral</option> | |
| 47 <option value="Lung-Adenocarcinoma">Lung-Adenocarcinoma</option> | |
| 48 <option value="Lung-Squamous_Cell">Lung-Squamous_Cell</option> | |
| 49 <option value="Melanoma">Melanoma</option> | |
| 50 <option value="Other">Other</option> | |
| 51 <option value="Ovary">Ovary</option> | |
| 52 <option value="Pancreas">Pancreas</option> | |
| 53 <option value="Prostate-Adenocarcinoma">Prostate-Adenocarcinoma</option> | |
| 54 <option value="Rectum">Rectum</option> | |
| 55 <option value="Skin">Skin</option> | |
| 56 <option value="Stomach">Stomach</option> | |
| 57 <option value="Thyroid">Thyroid</option> | |
| 58 <option value="Uterus">Uterus</option> | |
| 59 </param> | |
| 60 </inputs> | |
| 61 <outputs> | |
| 62 <data format="tabular" name="gene_analysis_out"/> | |
| 63 <data format="tabular" name="variant_analysis_out" /> | |
| 64 <data format="tabular" name="amino_acid_level_analysis_out" /> | |
| 65 <data format="tabular" name="error_file"/> | |
| 66 </outputs> | |
| 67 <help> | |
| 68 **What it does** | |
| 69 * CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) is a method that predicts the functional significance of somatic missense variants | |
| 70 observed in the genomes of cancer cells, allowing variants to be prioritized in subsequent functional studies, based on the probability that they confer | |
| 71 increased fitness to a cancer cell. CHASM uses a machine learning method called Random Forest to distinguish between driver and passenger somatic missense variation. | |
| 72 The Random Forest is trained on a positive class of drivers curated from the COSMIC database and a negative class of passengers, generated in silico, | |
| 73 according to passenger base substitution frequencies estimated for a specific tumor type. Each variant is represented by a list of features, | |
| 74 including amino acid substitution properties, alignment-based estimates of conservation at the variant position, predicted local structure and annotations from | |
| 75 the UniProt Knowledgebase. Only missense mutations are analyzed by CHASM. For more information on CHASM, please visit http://wiki.chasmsoftware.org | |
| 76 | |
| 77 * SNVGet retrieves selected predictive features for a variant. Features can be broadly categorized into 3 types: | |
| 78 - Amino Acid Substitution features | |
| 79 - Protein-based position-specific features | |
| 80 - Exon-specific features | |
| 81 Only missense mutations are analyzed by SNVGet. For more information on SNVBox (database made with SNVGet), please visit http://wiki.chasmsoftware.org | |
| 82 * VEST is a method that predicts the functional effect of a variant. | |
| 83 | |
| 84 | |
| 85 | |
| 86 **Citation** | |
| 87 If you use this Galaxy tool in work leading to a scientific publication please cite: | |
| 88 | |
| 89 Carter, Hannah, et al. "Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations." | |
| 90 Cancer research 69.16 (2009): 6660-6667. | |
| 91 | |
| 92 Wong, Wing Chung, et al. "CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer." | |
| 93 Bioinformatics 27.15 (2011): 2147-2148. | |
| 94 </tool> |
