Mercurial > repos > rv43 > tomo
view tomo_setup.py @ 59:feb2a5fc7c76 draft
"planemo upload for repository https://github.com/rolfverberg/galaxytools commit 9a07ab3099737ee0d99e82739b55048f89c36bc6"
author | rv43 |
---|---|
date | Tue, 16 Aug 2022 16:55:50 +0000 |
parents | bead50a4eadc |
children | 52db7707ff48 |
line wrap: on
line source
#!/usr/bin/env python3 import logging import os import sys import re import yaml import argparse import numpy as np import tracemalloc from tomo import Tomo #from memory_profiler import profile #@profile def __main__(): # Parse command line arguments parser = argparse.ArgumentParser( description='Setup tomography reconstruction') parser.add_argument('--inputconfig', default='inputconfig.txt', help='Input config from tool form') parser.add_argument('--inputfiles', default='inputfiles.txt', help='Input file collections') parser.add_argument('-c', '--config', help='Input config file') parser.add_argument('--num_theta', help='Number of theta angles') parser.add_argument('--theta_range', help='Theta range (lower bound, upper bound)') parser.add_argument('--output_config', help='Output config') parser.add_argument('--output_data', help='Preprocessed tomography data') parser.add_argument('-l', '--log', type=argparse.FileType('w'), default=sys.stdout, help='Log file') args = parser.parse_args() # Starting memory monitoring tracemalloc.start() # Set basic log configuration logging_format = '%(asctime)s : %(levelname)s - %(module)s : %(funcName)s - %(message)s' log_level = 'INFO' level = getattr(logging, log_level.upper(), None) if not isinstance(level, int): raise ValueError(f'Invalid log_level: {log_level}') logging.basicConfig(format=logging_format, level=level, force=True, handlers=[logging.StreamHandler()]) logging.info(f'config = {args.config}') logging.info(f'num_theta = {args.num_theta}') if args.theta_range is None: logging.info(f'theta_range = {args.theta_range}') else: logging.info(f'theta_range = {args.theta_range.split()}') logging.info(f'output_config = {args.output_config}') logging.info(f'output_data = {args.output_data}') logging.info(f'log = {args.log}') logging.debug(f'is log stdout? {args.log is sys.stdout}') # Read tool config input inputconfig = [] with open(args.inputconfig) as f: inputconfig = [line.strip() for line in f if line.strip() and not line.startswith('#')] assert(len(inputconfig) >= 6) config_type = inputconfig[0] input_type = inputconfig[1] num_stack = int(inputconfig[2]) stack_types = [x.strip() for x in inputconfig[3].split()] num_imgs = [int(x.strip()) for x in inputconfig[4].split()] img_offsets = [int(x.strip()) for x in inputconfig[5].split()] if config_type == 'config_manual': assert(len(inputconfig) == 7) ref_heights = [float(x.strip()) for x in inputconfig[6].split()] else: ref_heights = None logging.info(f'config_type = {config_type} {type(config_type)}') logging.info(f'input_type = {input_type} {type(input_type)}') logging.info(f'num_stack = {num_stack} {type(num_stack)}') logging.info(f'stack_types = {stack_types} {type(stack_types)}') logging.info(f'num_imgs = {num_imgs} {type(num_imgs)}') logging.info(f'img_offsets = {img_offsets} {type(img_offsets)}') logging.info(f'ref_heights = {ref_heights} {type(ref_heights)}') # Read input files and collect data files info datasets = [] with open(args.inputfiles) as f: for line in f: if not line.strip() or line.startswith('#'): continue fields = [x.strip() for x in line.split('\t')] filepath = fields[0] element_identifier = fields[1] if len(fields) > 1 else fields[0].split('/')[-1] datasets.append({'element_identifier' : fields[1], 'filepath' : filepath}) logging.debug(f'datasets:\n{datasets}') print(f'datasets:\n{datasets}') # Read and sort data files collections = [] for dataset in datasets: element_identifier = [x.strip() for x in dataset['element_identifier'].split('_')] if len(element_identifier) > 1: name = element_identifier[0] else: name = 'other' filepath = dataset['filepath'] print(f'element_identifier = {element_identifier} {len(element_identifier)}') print(f'name = {name}') print(f'filepath = {filepath}') if not len(collections): collections = [{'name' : name, 'filepaths' : [filepath]}] else: collection = [c for c in collections if c['name'] == name] if len(collection): collection[0]['filepaths'].append(filepath) else: collection = {'name' : name, 'filepaths' : [filepath]} collections.append(collection) logging.debug(f'collections:\n{collections}') print(f'collections:\n{collections}') return # Instantiate Tomo object tomo = Tomo(config_file=args.config, config_out=args.output_config, log_level=log_level, log_stream=args.log, galaxy_flag=True) if not tomo.is_valid: raise ValueError('Invalid config file provided.') logging.debug(f'config:\n{tomo.config}') # Set theta inputs theta_range = args.theta_range.split() config_theta_range = tomo.config.get('theta_range') if config_theta_range is None: config_tomo.config['theta_range'] = {'start' : float(theta_range[0]), 'end' : float(theta_range[1]), 'num' : int(theta_range[2])} else: config_theta_range['start'] = float(theta_range[0]) config_theta_range['end'] = float(theta_range[1]) config_theta_range['num'] = int(theta_range[2]) # Find dark field files dark_field = tomo.config['dark_field'] tdf_files = [c['filepaths'] for c in collections if c['name'] == 'tdf'] if len(tdf_files) != 1 or len(tdf_files[0]) < 1: logging.warning('Unable to obtain dark field files') assert(dark_field['data_path'] is None) assert(dark_field['img_start'] == -1) assert(not dark_field['num']) tdf_files = [None] num_collections = 0 else: dark_field['img_offset'] = args.tomo_ranges[0] dark_field['num'] = args.tomo_ranges[1] num_collections = 1 # Find bright field files bright_field = tomo.config['bright_field'] bright_field['img_offset'] = args.tomo_ranges[2*num_collections] bright_field['num'] = args.tomo_ranges[2*num_collections+1] tbf_files = [c['filepaths'] for c in collections if c['name'] == 'tbf'] if len(tbf_files) != 1 or len(tbf_files[0]) < 1: exit('Unable to obtain bright field files') num_collections += 1 # Find tomography files stack_info = tomo.config['stack_info'] if stack_info['num'] != len(collections) - num_collections: raise ValueError('Inconsistent number of tomography data image sets') tomo_stack_files = [] for stack in stack_info['stacks']: stack['img_offset'] = args.tomo_ranges[2*num_collections] stack['num'] = args.tomo_ranges[2*num_collections+1] tomo_files = [c['filepaths'] for c in collections if c['name'] == f'set{stack["index"]}'] if len(tomo_files) != 1 or len(tomo_files[0]) < 1: exit(f'Unable to obtain tomography images for set {stack["index"]}') tomo_stack_files.append(tomo_files[0]) num_collections += 1 # Preprocess the image files galaxy_param = {'tdf_files' : tdf_files[0], 'tbf_files' : tbf_files[0], 'tomo_stack_files' : tomo_stack_files, 'output_name' : args.output_data} tomo.genTomoStacks(galaxy_param) if not tomo.is_valid: IOError('Unable to load all required image files.') # Displaying memory usage logging.info(f'Memory usage: {tracemalloc.get_traced_memory()}') # stopping memory monitoring tracemalloc.stop() if __name__ == "__main__": __main__()