Mercurial > repos > rnateam > graphclust_nspdk
comparison NSPDK_sparseVect.xml @ 0:d7d270d97c25 draft
planemo upload for repository https://github.com/eteriSokhoyan/galaxytools/tree/branchForIterations/tools/GraphClust/NSPDK commit 21aaee40723b5341b4236edeb0e72995c2054053
author | rnateam |
---|---|
date | Fri, 16 Dec 2016 07:32:59 -0500 |
parents | |
children | e772ceb48396 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d7d270d97c25 |
---|---|
1 <tool id="nspdk_sparse" name="NSPDK_sparseVect" version="9.2"> | |
2 <requirements> | |
3 <requirement type="package" version="0.1">graphclust-wrappers</requirement> | |
4 <requirement type="package" version="9.2">nspdk</requirement> | |
5 </requirements> | |
6 <stdio> | |
7 <exit_code range="1:" /> | |
8 </stdio> | |
9 <command> | |
10 <![CDATA[ | |
11 | |
12 | |
13 'NSPDK_sparseVect.pl' '$data_fasta' '$gspan_file' $max_rad $max_dist_relations | |
14 | |
15 ]]> | |
16 </command> | |
17 <inputs> | |
18 <param type="data" name="gspan_file" format="searchgui_archive" /> | |
19 <param type="data" name="data_fasta" format="fasta" /> | |
20 <param name="max_rad" type="integer" value="3" size="5" label="maximum radius " help="-R"/> | |
21 <param name="max_dist_relations" type="integer" value="3" size="5" label="maximum distance relations" help="-D"/> | |
22 </inputs> | |
23 <outputs> | |
24 <data name="data_svector" format="zip" from_work_dir="SVECTOR/data.svector" label="data_svector"/> | |
25 </outputs> | |
26 <tests> | |
27 <test> | |
28 <param name="data_fasta" value="data.fasta"/> | |
29 <param name="gspan_file" value="1.group.gspan.bz2" ftype="searchgui_archive"/> | |
30 <param name="max_rad" value="3"/> | |
31 <param name="max_dist_relations" value="3"/> | |
32 <output name="data_svector" file="SVECTOR/data.svector" ftype="zip" /> | |
33 </test> | |
34 </tests> | |
35 <help> | |
36 <![CDATA[ | |
37 | |
38 **What it does** | |
39 | |
40 Produces an explicit sparse feature encoding. | |
41 Integer code for the invariant graph encoding is used as a feature indicator. In this way, | |
42 the integer associated to each feature (i.e. each pair or neighborhood subgraphs of radius r whose | |
43 roots are at distance d) can be interpreted as the feature key and the (normalized) count of occurrences as its value. | |
44 This allows to obtain an explicit feature encoding for a given graph G as a sparse vector in ℝ^m (with a very high dimension m). | |
45 | |
46 **Parameters** | |
47 | |
48 + **-R** <max radius> (default: 1) | |
49 + **-D** <max distance relations> (default: 4) | |
50 | |
51 | |
52 ]]> | |
53 </help> | |
54 <citations> | |
55 <citation type="doi">10.1093/bioinformatics/bts224</citation> | |
56 <citation type="bibtex">@inproceedings{costa2010fast, | |
57 title={Fast neighborhood subgraph pairwise distance kernel}, | |
58 author={Costa, Fabrizio and De Grave, Kurt}, | |
59 booktitle={Proceedings of the 26th International Conference on Machine Learning}, | |
60 pages={255--262}, | |
61 year={2010}, | |
62 organization={Omnipress} | |
63 } | |
64 </citation> | |
65 </citations> | |
66 </tool> |