Mercurial > repos > recetox > retip_apply
view macros.xml @ 9:a66070c7d55b draft default tip
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/retip commit 9bc547872c98a9c13c561d15e8990fe82bdc0e72"
author | recetox |
---|---|
date | Fri, 28 Jan 2022 16:28:38 +0000 |
parents | c550dae786fd |
children |
line wrap: on
line source
<macros> <token name="@TOOL_VERSION@">0.5.4</token> <xml name="creator"> <creator> <person givenName="Muhammad" familyName="Usman" url="https://github.com/smartx-usman" identifier="0000-0002-9598-0704" /> <person givenName="Aleš" familyName="Křenek" url="https://github.com/ljocha" identifier="0000-0002-3395-3196" /> <organization url="https://www.recetox.muni.cz/" email="GalaxyToolsDevelopmentandDeployment@space.muni.cz" name="RECETOX MUNI" /> </creator> </xml> <xml name="requirements"> <requirements> <container type="docker">recetox/retip:@TOOL_VERSION@-recetox4</container> </requirements> </xml> <xml name="citations"> <citations> <citation type="doi">https://doi.org/10.1021/acs.analchem.9b05765</citation> </citations> </xml> <token name="@HELP@"><![CDATA[ **Retip** is an R package for predicting Retention Time (RT) for small molecules in a high pressure liquid chromatography (HPLC) Mass Spectrometry analysis. Retention time calculation can be useful in identifying unknowns and removing false positive annotations. It uses five different machine learning algorithms to built a stable, accurate and fast RT prediction model: - Random Forest: a decision tree algorithms - BRNN: Bayesian Regularized Neural Network - XGBoost: an extreme Gradient Boosting for tree algorithms - lightGBM: a gradient boosting framework that uses tree based learning algorithms. - Keras: a high-level neural networks API for Tensorflow Retip also includes useful biochemical databases like: BMDB, ChEBI, DrugBank, ECMDB, FooDB, HMDB, KNApSAcK, PlantCyc, SMPDB, T3DB, UNPD, YMDB and STOFF. **Get started** To use Retip, a user needs to prepare a compound retention time library. The input file needs compound Name, InChiKey, SMILES code and experimental retention time information for each compound. The input must be a CSV file. Retip will use this input file to build a the model and will predict retention times for other biochemical databases or an input query list of compounds. It is suggested that the file has at least 300 compounds to build a good retention time prediction model. ]]> </token> </macros>