Mercurial > repos > recetox > recetox_aplcms_unsupervised
comparison main.R @ 10:6057540f65a9 draft
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/recetox_aplcms commit 46f606d8d234807e603b55eb2791f76663b551ee"
author | recetox |
---|---|
date | Thu, 21 Oct 2021 15:03:18 +0000 |
parents | d06ec5e6721c |
children | 006736cab495 |
comparison
equal
deleted
inserted
replaced
9:b18c2d014b28 | 10:6057540f65a9 |
---|---|
1 library(recetox.aplcms) | 1 library(recetox.aplcms) |
2 library(dplyr) | |
2 | 3 |
3 save_extracted_features <- function(df, filename) { | 4 save_extracted_features <- function(df, filename) { |
4 df <- as.data.frame(df) | 5 df <- as.data.frame(df) |
5 columns <- c("mz", "pos", "sd1", "sd2", "area") | 6 columns <- c("mz", "pos", "sd1", "sd2", "area") |
6 arrow::write_parquet(df[columns], filename) | 7 arrow::write_parquet(df[columns], filename) |
7 } | 8 } |
8 | 9 |
9 save_feature_sample_table <- function(df, filename) { | 10 save_aligned_feature_table <- function(df, filename) { |
10 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") | 11 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") |
11 arrow::write_parquet(df[columns], filename) | 12 arrow::write_parquet(df[columns], filename) |
13 } | |
14 | |
15 save_recovered_feature_table <- function(df, filename, out_format) { | |
16 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") | |
17 if (out_format == "recetox") { | |
18 peak_table <- df[columns] | |
19 recetox_peak_table <- rcx_aplcms_to_rcx_xmsannotator(peak_table) | |
20 arrow::write_parquet(recetox_peak_table, filename) | |
21 } else { | |
22 arrow::write_parquet(df[columns], filename) | |
23 } | |
24 } | |
25 | |
26 rcx_aplcms_to_rcx_xmsannotator <- function(peak_table) { | |
27 col_base <- c("feature", "mz", "rt") | |
28 output_table <- peak_table %>% distinct(across(any_of(col_base))) | |
29 | |
30 for (level in levels(peak_table$sample)) { | |
31 subdata <- peak_table %>% | |
32 filter(sample == level) %>% | |
33 select(any_of(c(col_base, "sample_intensity"))) %>% | |
34 rename(!!level := "sample_intensity") | |
35 output_table <- inner_join(output_table, subdata, by = col_base) | |
36 } | |
37 output_table <- output_table %>% rename(peak = feature) | |
38 return(output_table) | |
12 } | 39 } |
13 | 40 |
14 known_table_columns <- function() { | 41 known_table_columns <- function() { |
15 c("chemical_formula", "HMDB_ID", "KEGG_compound_ID", "mass", "ion.type", | 42 c("chemical_formula", "HMDB_ID", "KEGG_compound_ID", "mass", "ion.type", |
16 "m.z", "Number_profiles_processed", "Percent_found", "mz_min", "mz_max", | 43 "m.z", "Number_profiles_processed", "Percent_found", "mz_min", "mz_max", |
45 filenames <- file.path("corrected", filenames) | 72 filenames <- file.path("corrected", filenames) |
46 dir.create("corrected") | 73 dir.create("corrected") |
47 mapply(save_extracted_features, dfs, filenames) | 74 mapply(save_extracted_features, dfs, filenames) |
48 } | 75 } |
49 | 76 |
50 unsupervised_main <- function(sample_files, aligned_file, recovered_file, ...) { | 77 unsupervised_main <- function(sample_files, aligned_file, recovered_file, out_format, ...) { |
51 sample_files <- sort_samples_by_acquisition_number(sample_files) | 78 sample_files <- sort_samples_by_acquisition_number(sample_files) |
52 | 79 |
53 res <- unsupervised(filenames = sample_files, ...) | 80 res <- unsupervised(filenames = sample_files, ...) |
54 | 81 |
55 save_all_extracted_features(res$extracted_features, sample_files) | 82 save_all_extracted_features(res$extracted_features, sample_files) |
56 save_all_corrected_features(res$corrected_features, sample_files) | 83 save_all_corrected_features(res$corrected_features, sample_files) |
57 | 84 |
58 save_feature_sample_table(res$aligned_feature_sample_table, aligned_file) | 85 save_aligned_feature_table(res$aligned_feature_sample_table, aligned_file) |
59 save_feature_sample_table(res$recovered_feature_sample_table, recovered_file) | 86 save_recovered_feature_table(res$recovered_feature_sample_table, recovered_file, out_format) |
60 } | 87 } |
61 | 88 |
62 hybrid_main <- function(sample_files, known_table_file, updated_known_table_file, pairing_file, aligned_file, recovered_file, ...) { | 89 hybrid_main <- function(sample_files, known_table_file, updated_known_table_file, pairing_file, aligned_file, recovered_file, out_format, ...) { |
63 sample_files <- sort_samples_by_acquisition_number(sample_files) | 90 sample_files <- sort_samples_by_acquisition_number(sample_files) |
64 | 91 |
65 known <- read_known_table(known_table_file) | 92 known <- read_known_table(known_table_file) |
66 res <- hybrid(filenames = sample_files, known_table = known, ...) | 93 res <- hybrid(filenames = sample_files, known_table = known, ...) |
67 | 94 |
69 save_pairing(res$features_known_table_pairing, pairing_file) | 96 save_pairing(res$features_known_table_pairing, pairing_file) |
70 | 97 |
71 save_all_extracted_features(res$extracted_features, sample_files) | 98 save_all_extracted_features(res$extracted_features, sample_files) |
72 save_all_corrected_features(res$corrected_features, sample_files) | 99 save_all_corrected_features(res$corrected_features, sample_files) |
73 | 100 |
74 save_feature_sample_table(res$aligned_feature_sample_table, aligned_file) | 101 save_aligned_feature_table(res$aligned_feature_sample_table, aligned_file) |
75 save_feature_sample_table(res$recovered_feature_sample_table, recovered_file) | 102 save_recovered_feature_table(res$recovered_feature_sample_table, recovered_file, out_format) |
76 } | 103 } |