Mercurial > repos > recetox > recetox_aplcms_two_step_hybrid
comparison main.R @ 0:bd044e7eebbd draft
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/recetox_aplcms commit b3e0c34f12c9c38fb34bf48197974620d60b50c5
| author | recetox |
|---|---|
| date | Thu, 26 May 2022 16:45:36 +0000 |
| parents | |
| children | 886d52fd343f |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:bd044e7eebbd |
|---|---|
| 1 library(recetox.aplcms) | |
| 2 library(dplyr) | |
| 3 | |
| 4 save_extracted_features <- function(df, filename) { | |
| 5 df <- as.data.frame(df) | |
| 6 columns <- c("mz", "pos", "sd1", "sd2", "area") | |
| 7 arrow::write_parquet(df[columns], filename) | |
| 8 } | |
| 9 | |
| 10 save_aligned_feature_table <- function(df, filename) { | |
| 11 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") | |
| 12 arrow::write_parquet(df[columns], filename) | |
| 13 } | |
| 14 | |
| 15 save_recovered_feature_table <- function(df, filename, out_format) { | |
| 16 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") | |
| 17 if (out_format == "recetox") { | |
| 18 peak_table <- df[columns] | |
| 19 recetox_peak_table <- rcx_aplcms_to_rcx_xmsannotator(peak_table) | |
| 20 arrow::write_parquet(recetox_peak_table, filename) | |
| 21 } else { | |
| 22 arrow::write_parquet(df[columns], filename) | |
| 23 } | |
| 24 } | |
| 25 | |
| 26 rcx_aplcms_to_rcx_xmsannotator <- function(peak_table) { | |
| 27 col_base <- c("feature", "mz", "rt") | |
| 28 output_table <- peak_table %>% distinct(across(any_of(col_base))) | |
| 29 | |
| 30 for (level in levels(factor(peak_table$sample))) { | |
| 31 subdata <- peak_table %>% | |
| 32 filter(sample == level) %>% | |
| 33 select(any_of(c(col_base, "sample_intensity"))) %>% | |
| 34 rename(!!level := "sample_intensity") | |
| 35 output_table <- inner_join(output_table, subdata, by = col_base) | |
| 36 } | |
| 37 output_table <- output_table %>% rename(peak = feature) | |
| 38 return(output_table) | |
| 39 } | |
| 40 | |
| 41 known_table_columns <- function() { | |
| 42 c("chemical_formula", "HMDB_ID", "KEGG_compound_ID", "mass", "ion.type", | |
| 43 "m.z", "Number_profiles_processed", "Percent_found", "mz_min", "mz_max", | |
| 44 "RT_mean", "RT_sd", "RT_min", "RT_max", "int_mean(log)", "int_sd(log)", | |
| 45 "int_min(log)", "int_max(log)") | |
| 46 } | |
| 47 | |
| 48 save_known_table <- function(df, filename) { | |
| 49 columns <- known_table_columns() | |
| 50 arrow::write_parquet(df[columns], filename) | |
| 51 } | |
| 52 | |
| 53 read_known_table <- function(filename) { | |
| 54 arrow::read_parquet(filename, col_select = known_table_columns()) | |
| 55 } | |
| 56 | |
| 57 save_pairing <- function(df, filename) { | |
| 58 write.table(df, filename, row.names = FALSE, col.names = c("new", "old")) | |
| 59 } | |
| 60 | |
| 61 save_all_extracted_features <- function(dfs, filenames) { | |
| 62 filenames <- tools::file_path_sans_ext(basename(filenames)) | |
| 63 filenames <- paste0(filenames, ".parquet") | |
| 64 filenames <- file.path("extracted", filenames) | |
| 65 dir.create("extracted") | |
| 66 mapply(save_extracted_features, dfs, filenames) | |
| 67 } | |
| 68 | |
| 69 save_all_corrected_features <- function(dfs, filenames) { | |
| 70 filenames <- tools::file_path_sans_ext(basename(filenames)) | |
| 71 filenames <- paste0(filenames, ".parquet") | |
| 72 filenames <- file.path("corrected", filenames) | |
| 73 dir.create("corrected") | |
| 74 mapply(save_extracted_features, dfs, filenames) | |
| 75 } | |
| 76 | |
| 77 unsupervised_main <- function(sample_files, aligned_file, recovered_file, out_format, ...) { | |
| 78 sample_files <- sort_samples_by_acquisition_number(sample_files) | |
| 79 | |
| 80 res <- unsupervised(filenames = sample_files, ...) | |
| 81 | |
| 82 save_all_extracted_features(res$extracted_features, sample_files) | |
| 83 save_all_corrected_features(res$corrected_features, sample_files) | |
| 84 | |
| 85 save_aligned_feature_table(res$aligned_feature_sample_table, aligned_file) | |
| 86 save_recovered_feature_table(res$recovered_feature_sample_table, recovered_file, out_format) | |
| 87 } | |
| 88 | |
| 89 hybrid_main <- function(sample_files, known_table_file, updated_known_table_file, pairing_file, aligned_file, recovered_file, out_format, ...) { | |
| 90 sample_files <- sort_samples_by_acquisition_number(sample_files) | |
| 91 | |
| 92 known <- read_known_table(known_table_file) | |
| 93 res <- hybrid(filenames = sample_files, known_table = known, ...) | |
| 94 | |
| 95 save_known_table(res$updated_known_table, updated_known_table_file) | |
| 96 save_pairing(res$features_known_table_pairing, pairing_file) | |
| 97 | |
| 98 save_all_extracted_features(res$extracted_features, sample_files) | |
| 99 save_all_corrected_features(res$corrected_features, sample_files) | |
| 100 | |
| 101 save_aligned_feature_table(res$aligned_feature_sample_table, aligned_file) | |
| 102 save_recovered_feature_table(res$recovered_feature_sample_table, recovered_file, out_format) | |
| 103 } | |
| 104 | |
| 105 two_step_hybrid_main <- function(sample_files, known_table_file, updated_known_table_file, recovered_file, aligned_file, out_format, metadata, ...) { | |
| 106 sample_files <- sort_samples_by_acquisition_number(sample_files) | |
| 107 metadata <- read.table(metadata, sep = ",", header = TRUE) | |
| 108 | |
| 109 known_table <- read_known_table(known_table_file) | |
| 110 res <- two.step.hybrid(filenames = sample_files, known.table = known_table, work_dir = getwd(), metadata = metadata, ...) | |
| 111 | |
| 112 save_known_table(res$known_table, updated_known_table_file) | |
| 113 save_aligned_feature_table(res$aligned_features, aligned_file) | |
| 114 save_recovered_feature_table(res$final_features, recovered_file, out_format) | |
| 115 } |
