Mercurial > repos > recetox > recetox_aplcms_hybrid
view aplcms_hybrid.xml @ 3:bb4ffaeba411 draft
"planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/aplcms commit 1852a90740a2e1e98f576d68164100c46daaf71a"
author | recetox |
---|---|
date | Wed, 07 Oct 2020 16:07:23 +0000 |
parents | 30b1888f985a |
children |
line wrap: on
line source
<tool id="recetox_aplcms_hybrid" name="apLCMS - Hybrid" version="@TOOL_VERSION@+galaxy1"> <macros> <import>aplcms_macros.xml</import> </macros> <expand macro="requirements" /> <command detect_errors="aggressive"><![CDATA[ #set file_str = str('", "').join([str($f) for $f in $files]) Rscript -e 'x <- apLCMS::hybrid( files = c("$file_str"), known_table = apLCMS::load_known_table_from_hdf("$known_table"), min_exp = $noise_filtering.min_exp, min_pres = $noise_filtering.min_pres, min_run = $noise_filtering.min_run, mz_tol = $noise_filtering.mz_tol, baseline_correct = $noise_filtering.baseline_correct, baseline_correct_noise_percentile = $noise_filtering.baseline_correct_noise_percentile, intensity_weighted = $noise_filtering.intensity_weighted, shape_model = "$feature_detection.shape_model", BIC_factor = $feature_detection.BIC_factor, peak_estim_method = "$feature_detection.peak_estim_method", min_bandwidth = $feature_detection.min_bandwidth, max_bandwidth = $feature_detection.max_bandwidth, sd_cut = c($feature_detection.sd_cut_min, $feature_detection.sd_cut_max), sigma_ratio_lim = c($feature_detection.sigma_ratio_lim_min, $feature_detection.sigma_ratio_lim_max), component_eliminate = $feature_detection.component_eliminate, moment_power = $feature_detection.moment_power, align_chr_tol = $peak_alignment.align_chr_tol, align_mz_tol = $peak_alignment.align_mz_tol, max_align_mz_diff = $peak_alignment.max_align_mz_diff, match_tol_ppm = $history_db.match_tol_ppm, new_feature_min_count = $history_db.new_feature_min_count, recover_mz_range = $weak_signal_recovery.recover_mz_range, recover_chr_range = $weak_signal_recovery.recover_chr_range, use_observed_range = $weak_signal_recovery.use_observed_range, recover_min_count = $weak_signal_recovery.recover_min_count )' -e 'apLCMS::save_peaks_to_hdf("$peaks", x)' -e 'apLCMS::save_known_table_to_hdf("$updated_known_table", x\$updated_known_table)' ]]></command> <expand macro="inputs"> <expand macro="history_db" /> <expand macro="noise_filtering" /> <expand macro="feature_detection" /> <expand macro="peak_alignment" /> <expand macro="weak_signal_recovery" /> </expand> <outputs> <data name="peaks" format="h5" /> <data name="updated_known_table" format="h5" /> </outputs> <tests> <test> <param name="files" value="mbr_test0.mzml,mbr_test1.mzml,mbr_test2.mzml" ftype="mzml"/> <param name="known_table" value="known_table.h5" ftype="h5"/> <output name="peaks" file="peaks_hybrid.h5" ftype="h5" compare="sim_size" delta="1000"/> </test> </tests> <help> This is the Hybrid version of apLCMS which is incorporating the knowledge of known metabolites and historically detected features on the same machinery to help detect and quantify lower-intensity peaks. CAUTION: To use such knowledge, especially historical data, you must keep using (1) the same chromatography system (otherwise the retention time will not match), and (2) the same type of samples with similar extraction technique, such as human serum. @GENERAL_HELP@ </help> <expand macro="citations" /> </tool>